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Abstract 
 

Stock investment prices are never still; they are always changing. It is important to stay informed on the upward or downward trends of the 
market to make future investments. This paper aims to examine the question: which of the python models used in this study are the most accurate 
at predicting the price of the stock market, x days into the future? To accustom the machine learning (ML) predictor to the multitude of 
possibilities that could categorize stock patterns, 7 different ML models were trained on 1250 pieces of open stock market data dating to the last 
5 years by assigning weight values to all the models based on their accuracy. Results showed that two of the ML models, specifically the Linear 
Regression and the Random Sample Consensus (RANSAC) Regress or models consistently outperformed the other 5 models, both ending up 
with the highest weight values of around 0.5 when predicting for Amazon, Apple, and Tesla. Therefore, the RANSAC and Linear 
Regression models are the best models to rely on when predicting open stock market prices using ML. 
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INTRODUCTION 

 
This project focuses on crafting a machine learning (ML) stock 
prediction model for three different companies’ (Apple, 
Amazon, and Tesla) stock using Python on Google Collab. The 
dataset is a collection of numerical data, specifically historical 
open stock prices for each company. This paper uses 1250 
open stock price samples each for Amazon, Tesla, and Apple, 
every piece of data representing a different point 
date (Macrotrends, 2024) . To see how well the model 
performs, the dataset was carefully split. Around 33% (417 
samples) are set aside for the testing dataset, while the 
remaining 67% (833 samples) are used for training. The 
dataset is entirely made up of historical open stock prices from 
the last 5 years. These are numbers necessary to predict what 
each stock will be valued in the future. Open and close prices 
give a peek into daily stock performance, while high and low 
prices show how prices change throughout the 
day (Investopedia, 2023). The trading volumes show how 
much activity and interest there is in a company’s stock. This 
research holds paramount importance in advancing our 
utilization of artificial intelligence to predict economic factors, 
notably within the dynamic domain of the stock market. As AI 
technology evolves, the potential for enhanced stock trend 
forecasting becomes increasingly significant. The primary 
objectives focus on determining the optimal performance 
among the seven machine learning models employed. 
However, the study acknowledges inherent limitations, 
particularly in achieving uniform performance across 
companies due to distinct stock trend shapes. Despite these 
challenges, the research contributes valuable insights to the 
integration of AI in finance, emphasizing both its potential and 
the strategic considerations necessary to navigate hurdles. To 
make accurate predictions, it’s important to use a sophisticated 
approach. Seven different ML models were trained, including 
linear regression, RANSAC, SVR, Gaussian regression,  
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Random Forest Regressor, a neural network, and Decision 
Tree model. Each model was given a “performance score”, or a 
weight, based on how well they’ve done historically, using an 
approach that combines multiple models for better results. The 
model with the best track record holds the most credibility to 
provide predictions on stock prices. One alternate method that 
has been historically employed to predict the market is the 
“Elliot Wave theory” (Investopedia, 2023) . This theory is a 
form of technical analysis that attempts to predict future price 
movements by identifying patterns in market sentiment. It is 
based on the idea that financial markets move in cycles and 
that these cycles can be analyzed and predicted. The Elliott 
Wave Theory suggests that markets move in waves, with 
alternating patterns of upward and downward movement. 
These waves are subdivided into impulsive waves (trending 
upward) and corrective waves (retracing the trend). Traders 
use this theory to identify the current wave and predict the next 
one. The difference between the Wave Theory and the stock 
prediction model is that market sentiment isn’t taken into 
consideration when using the stock prediction model. Other 
papers such as the one done by (Wong, Figini, Raheem, Hains, 
Khmelevsky, & Chu, 2023) used market sentiment calculations 
into their predictive processes. As the paper suggests, this can 
be a good and a bad thing: 
 
Using sentiment 
 
Pros: 
 
Providing a structured framework for understanding certain 
trends. Can help traders anticipate potential turning points in 
the market. 
 
Cons: 
 
Highly subjective and open to interpretation, making it 
challenging to apply consistently. Not always accurate, as 
market sentiment can be influenced by various factors. The 
paper acknowledges that their market sentiment analysis can 



be better, but they lacked the resources to do so currently. For 
the best possible results, this paper does not make use of 
market sentiment analysis, to provide as standardized and 
reliable of information as possible. 
 
This paper is organized as follows: 
 
1) Introduction: This section offers a concise overview of the 
research paper’s scope and objectives. 
2) Literature Review: Identifying the gaps in research about AI 
technology and its advancement into market calculations and 
statistics. 
3) Models and Methodology: This segment displays the 
comprehensive analysis of seven distinct models utilized in 
this study. It details their functionalities and potential 
contributions to the research. 
4) Results: A presentation of comprehensive data tables that 
elucidates the efficacy of all seven models in predicting open 
market prices based on the provided training data. The analysis 
prioritizes understanding high-performing models. 
5) Conclusion: This concluding section delves into the 
implications of the findings on the future landscape of stock 
prediction and machine learning models. It also explores 
potential avenues for further research. 
 
LITERATURE REVIEW 
 
The literature review section aims to contextualize the 
evolution of artificial intelligence (AI) and machine learning 
(ML) in stock price prediction research, highlighting the 
existing gaps in predicting unpredictable market behaviors. It 
endeavors to showcase how this research paper seeks to fill 
this gap by employing AI-infused ML models to forecast 
aspects traditionally deemed unforeseeable in financial 
markets. 
 
Context 
 
The rapid advancements in artificial intelligence (AI) and 
machine learning (ML) have revolutionized various industries. 
AI, particularly ML, has shown promise in predictive 
analytics, demonstrating the capability to forecast complex 
outcomes. Recent years have witnessed a surge in AI 
applications, leveraging vast datasets and sophisticated 
algorithms to make predictions in domains ranging from 
healthcare to finance. 
 
AI and ML in Stock Price Prediction 
 
Studies utilizing AI and ML for stock price prediction have 
proliferated, aiming to leverage these technologies’ potential in 
forecasting financial markets. Existing literature demonstrates 
a diverse range of ML models applied to predict stock prices, 
including neural networks, regression algorithms, decision 
trees, and alternate methods. However, despite these efforts, 
the financial markets’ inherent complexity and unpredictability 
persist as challenges in achieving consistent accuracy in stock 
price forecasting. 
 
Addressing the Gap in Literature 
 
The prevailing literature acknowledges the limitations of 
traditional models in forecasting stock prices accurately, 
especially in capturing unpredictable market behaviors. There 
exists a critical gap where the application of AI and ML to 

predict inherently unpredictable events or trends—such as 
sudden market shifts or anomalies—is limited. Current 
research tends to focus on historical data analysis and pattern 
recognition, often falling short in handling unforeseen market 
dynamics. This research paper aims to bridge this gap by 
employing existing ML models within the realm of AI to 
predict aspects of the stock market traditionally considered 
unpredictable. Leveraging historical data and advanced ML 
techniques, this study endeavors to explore the application of 
diverse ML algorithms to foresee trends that were 
conventionally deemed impervious to prediction. By 
amalgamating AI capabilities with established ML 
methodologies, this research strives to break new ground in 
forecasting market behaviors previously deemed uncertain or 
unforecastable. By leveraging the advancements in AI and 
expanding the scope of traditional ML models, this research 
seeks to pioneer a more comprehensive approach to stock price 
prediction. Through this exploration, the goal is not just to 
enhance predictive accuracy but also to shed light on the 
potential of AI in forecasting elements previously considered 
beyond prediction. 
 
MODELS AND METHODOLOGY 
 
This research project made use of 7 different models, 
consisting of Neural Network, RANSAC Regressor, Decision 
Tree, Random Forest Regressor, Gaussian regression, Linear 
Regression and Support Vector Regression models in order to 
predict stock market prices. Each model’s individual functions 
are explained below. 
 
Neural Network 
 
This model leverages the power of artificial neural networks, 
which are designed to mimic the human brain’s interconnected 
neurons, to make sense of complex data and make informed 
predictions. The neural network demonstrates several strengths 
that contribute to its effectiveness in predicting stock prices. 
One of its significant advantages lies in its ability to capture 
intricate, non-linear relationships within the data. This allows it 
to grasp subtle patterns and dependencies that may elude 
traditional linear models. Additionally, neural networks are 
highly adaptable and can learn from a vast amount of historical 
data, making them particularly well-suited for stock market 
predictions where historical patterns play a crucial 
role (Hardesty, 2017). However, it is essential to recognize that 
neural networks also have their weaknesses. One notable 
limitation is their “black-box” nature (Colah, 2014), which can 
make it challenging to interpret their decision-making 
processes. It may be difficult to discern exactly why the model 
arrives at a particular prediction, which could be a drawback 
when transparency and accountability are critical. Neural 
networks also require a substantial amount of data and 
computation, and they can be sensitive to over fitting if not 
properly regularized and validated. To dive into the specifics 
of how the neural network model operates, it employs a multi-
layered architecture. Each layer consists of artificial neurons 
that process and transform the input data. These neurons are 
interconnected with weighted connections that hold the key to 
the model’s predictive power (see Figure 1). The neural 
network assigns weight values to these connections during a 
training phase, where it learns from historical stock price data. 
This process involves minimizing a loss function, such as 
mean squared error, which quantifies the model’s prediction 
accuracy. The model iteratively adjusts these weights using 
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Regression model, controlling over half of the weightage. SVR 
(Support Vector Regression) doesn’t seem to have a relatively 
weightage and has a high relative MSE, meaning that this 
model was very inaccurate in determining stock market prices. 
It controlled less than 0.0000000000000000000000000001% 
of the overall weightage. 
 
DISCUSSION 
 
Based on these results, it is determined that the Linear 
Regression (Table 7) and RANSAC regressor model (Table 3) 
both tend to have the highest weigh value for all 3 companies, 
and therefore are the most valuable when aiming to predict the 
market. Both models end up with very similar weight values 
and have the lowest average MSE for testing data, which 
explains why they also have the highest weight values (Most 
ML models tend to perform worse on testing data). When 
considering the weight values, it’s important to note that all the 
values added together from every single model combined for 
each company are equal to 1. For example, when testing all of 
the 7 models for Apple, the value corresponding with weight 
for all the models should sum up to 1. The other 5 models 
ended up with extremely insignificant weight values, which 
explains why both the RANSAC regressor and the Linear 
Regression model each took up almost half the weightage 
each. There are differences in data between the RANSAC 
Regressor and the Linear regressor, of course, with the Linear 
Regression model holding an average of around 0.51 
weightage and the RANSAC model holding an average of 
around 0.49 throughout all three companies. This would 
technically make the RANSAC model inferior to the Linear 
Regression model, but the differences are so vast between 
these models and the other 5 that we can refer to both the LR 
and RANSAC model as reliable. Other research conducted on 
the topic of using ML to unearth the highest performing 
models supports the conclusion of the neural network, which 
performed third out of all 7 models in terms of weightage. The 
study (Gupta, Tiwari, Bhatnagar, Shalu, Singh, & Ranjan, 
2023) concluded that out of the two models, Random Forest 
Regressor, and a Neural Network model, the neural network 
models performs superiorly in predicting the stock market. 
This study takes the study a lot farther, examining 7 models 
instead of two to find those that perform even better than the 
neural network. The Gaussian model surprisingly performed 
extremely poorly, with an average mean squared error of 
128853.99 for the testing data. This incredibly high MSE 
results in the Gaussian regressor holding a weightage of 0 for 
all 3 companies, meaning that it shouldn’t even be considered 
when predicting stock prices and that the model is almost 
never accurate. This could be a result of the inability for a 
Gaussian model to plot sole linear data, and why the linear 
model itself performed superior to all other models. 
 
Conclusion 
 
This research thoroughly assessed seven predictive models, 
identifying the RANSAC Regressor and Linear Regression as 
superior tools for stock price prediction. The significance of 
simpler, linear models in capturing market trends underscores 
their reliability, albeit with recognition of inherent limitations 
when faced with unforeseen market dynamics. While this 
study’s findings remain consistent across these models, their 
applicability may be dependent on specific dataset 
characteristics and timeframes (such as a linear upward trend). 
Validation using diverse datasets and varying market 

conditions would bolster the accuracy of these findings across 
broader financial landscapes. Future research endeavors should 
expand the scope of stock prediction models by integrating 
them with expansive language models (for example, 
ChatGPT). Incorporating these larger language models along 
with specific datasets will enable the inclusion of multifaceted 
factors into the prediction process such as decisions made by 
stock owners, market volatility, customer sentiments, and 
more. This research, taking solely market data into account, 
serves as a stepping-stone for further advancement of this type 
of research. The aim is to enhance predictive accuracy and 
comprehensiveness, gradually reducing the perceived 
unpredictability of stock markets. The integration of predictive 
models with advanced language-based AI and comprehensive 
datasets marks a pivotal stride toward unlocking deeper 
insights into stock market behavior. By integrating a diverse 
array of important, influential factors, future stock prediction 
models can evolve into more comprehensive and robust tools, 
offering a clearer understanding of market dynamics and 
contributing to a gradual reduction in the perceived 
unpredictability of stock markets. This research paper serves as 
an essential step towards harnessing the potential of broader 
stock prediction models. Future endeavors must continue this 
trajectory by expanding model capacities, incorporating richer 
data sources, and embracing AI-driven advancements to propel 
stock market predictability into new realms. 
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