Vol. 02, Issue 05, pp.1447-1450, May, 2021 Available online at http://www.scienceijsar.com

Research Article

FUZZY SATISFACTORY BCK-FILTERS

*Najati, S. A.

Department of Mathematics and Statistics, Taif University, Taif-AL-Haweiah, KSA

Received 18th March 2021; Accepted 11th April 2021; Published online 24th May 2021

Abstract

The concept of satisfactory filters of *BCK*-algebras was introduced by Jun [9]. In this paper, we define the notion of fuzzy satisfactory *BCK*-filters and investigate some of its properties.

Keywords: BCK-algebras, filter, fuzzy filter, fuzzy satisfactory filter.

INTRODUCTION

The notion of *BCK*-algebra was introduced by Imai and Iseki in 1966 [5]. In same year, Iseki [6] introduced the notion of *BCI*-algebra which is a generalization of a *BCK*-algebra. After the introduction of the concept of fuzzy subsets by Zadeh [17], several researchers worked on the generalization of the notion fuzzy sets. Jun [9] introduced the notion of a satisfactory filter of a *BCK*-algebra and prove several basic properties which are related to satisfactory filter. In this paper, we introduce the notion of fuzzy satisfactory *BCK*-filter and prove some their fundamental properties.

Preliminaries

We review some basic definitions and properties that will be useful in our results. A *BCK-algebra* X is defined to be an algebra (X, *, 0) of type (2,0) satisfying the following conditions

 $\begin{array}{l} BCK - 1\big((xy)(xz)\big)(zy) = 0,\\ BCK - 2\big(x(xy)\big)y = 0,\\ BCK - 3xx = 0,\\ BCK - 4\ 0x = 0,\\ BCK - 5xy = 0 \ \text{and} \ yx = 0 \Rightarrow x = y,\\ \text{for all } x, y, z \in X, \ \text{where} \ xy = x \ * y \ , \ \text{and} \ xy = 0 \ \text{if and}\\ \text{only if} \ x \ \leq y \ . \end{array}$

In a *BCK*-algebra *X*, the following properties hold for all $x, y, z \in X$:

P-1 x0 = x, P-2 (xy)z = (xz)y, P-3 $x \le y$ implies that $xz \le yz$ and $zy \le zx$, P-4 $(xz)(yz) \le xy$, P-5 x(x(xy)) = xy, P-6 $xy \le x$.

A *BCK*-algebra X satisfying (xz)(yz) = (xy)z, for all $x, y, z \in X$, is said to be *positive implicative*.

A *BCK*-algebra X is *positive implicative* if and only if it satisfies xy = (xy)y, for all $x, y \in X$ [8]. A *BCK*-algebra X satisfying the identity x(xy) = y(yx), for all $x, y \in X$, is said to be *commutative*. A nonempty subset of a *BCK*-algebra X is called an *ideal* of X if it satisfies

I-10 $\in I$, I-2 $xy \in I, y \in I \Rightarrow x \in I$ for all $x, y \in X$.

A nonempty subset I of a *BCK*-algebra X is called a *positive implicative ideal* of X if it satisfies (I-1) and

I-3 $(xy)z \in I, yz \in I \Rightarrow xz \in I$ for all $x, y, z \in X$.

Note that every positive implicative ideal is an ideal (see [12, Proposition 2]). If there is a special element 1 in a *BCK*-algebra *X* satisfying $x \le 1$, for all $x \in X$, then 1 is called a *unit* of *X*. A *BCK*-algebra *X* with unit is said to be *bounded*. In what follows let *X* denote a bounded *BCK*-algebra unless otherwise specified, and we will use the notation x^* instead 1x for all $x \in X$. In a bounded *BCK*-algebra *X* we have

P-7 1^{*} = 0 and 0^{*} = 1. P-8 $y \le x$ implies that $x^* \le y^*$. P-9 $x^*y^* \le yx$.

If X is a commutative bounded *BCK*-algebra, then the equalities $(x^*)^* = x$, $x^*y^* = yx$ hold, for all $x, y \in X$, [8].

Definition 2.1. [13] Let F be a nonempty subset of X Then F is called a *filter* of X, if it satisfies the conditions.

F-1 1 $\in X$, F-2 $(x^*)^* y^* \in F, y \in F \Rightarrow x \in F$ for all $x, y \in X$.

Proposition 2.2. [13, Theorem 11] Assume that X is *commutative*. Then a nonempty subset F of X is a *filter* of X if and only if it satisfies F-1 and

F-3 $(xy)^* \in F, x \in F \Rightarrow y \in F$ for all $x, y \in X$.

Definition 2.3. [9] A nonempty subset F of X is called a *satisfactory filter* of X, if it satisfies (F-1) and

F-4 $(x(y(yz)^*)^*)^*$ ∈ $F, x \in F \Rightarrow (yz)^* \in F$ for all $x, y, z \in X$.

We review some fuzzy concepts. A fuzzy subset of a nonempty set X is a function $\mu: X \to [0,1]$. We shall use the notation X_{μ} for $\{x \in X | \mu(x) = \mu(1)\}$. The set $\mu_t = \{x \in X | \mu(x) \ge t\}$, where $t \in [0,1]$, is called the *t*-level subset of μ .

FUZZY FILTERS

Definition 3.1. [3] A fuzzy subset \mathcal{F} inX is said to be a *fuzzy filter* of X, if it satisfies:

FF-1 $\mathcal{F}(1) \ge \mathcal{F}(x)$, FF-2 $\mathcal{F}(x) \ge min\{\mathcal{F}((x^*y^*)^*), \mathcal{F}(y)\}$, for all $x, y \in X$.

Note that every fuzzy filter is order preserving (see [10, Proposition 3.5]).

Lemma 3.2. [3, Proposition 3.6] Let \mathcal{F} be a fuzzy filter of X.

Then

 $\mathcal{F}(x) \ge \min\{\mathcal{F}((yx)^*), \mathcal{F}(y)\}, \text{ for all } x, y \in X$ (1)

The following example shows that there is a fuzzy set \mathcal{F} in X such that \mathcal{F} satisfies condition (1), but not a fuzzy filter of X.

Example 3.3. Let $X = \{0, a, b, 1\}$ be a bounded *BCK*-algebra with * defined by

*	0	а	b	1
0	0	0	0	0
a	а	0	а	0
b	b	b	0	0
1	1	b	а	0

Define \mathcal{F} of $Xby\mathcal{F}(1) = \mathcal{F}(a) = 0.7$ and $\mathcal{F}(0) = \mathcal{F}(b) = 0.5$. Routine calculations give that \mathcal{F} is not a fuzzy filter of X. To consider the converse of Lemma 3.2, we need more strong conditions.

Theorem 3.4. Assume that *X* is commutative. If \mathcal{F} is an order preserving fuzzy set in *X* satisfying (1), then \mathcal{F} is a fuzzy filter of *X*.

Proof. Note that $y \le 1 = 1(0) = (y1)^*$ for all $y \in X$. since \mathcal{F} is order preserving, $\mathcal{F}(y) \le \mathcal{F}(y1)^*$. using (1), we have

 $\mathcal{F}(1) \ge \min\{\mathcal{F}((y1)^*), \mathcal{F}(y)\} \ge \min\{\mathcal{F}(y), \mathcal{F}(y)\} = \mathcal{F}(y)$

for all $y \in X$. Since $x^*y^* = yx$ for all $x, y \in X$, it follows from (1) that

 $\mathcal{F}(x) \ge \min\{\mathcal{F}((yx)^*), \mathcal{F}(y)\} = \min\{\mathcal{F}(x^*y^*)^*, \mathcal{F}(y)\}$

Hence \mathcal{F} is a fuzzy filter of X.

Theorem 3.5. Assume that X is commutative. If \mathcal{F} is a fuzzy set in X satisfying FF-1 and (1), then \mathcal{F} is a fuzzy filter of X. Proof. It is by the proof of Theorem 3.4.

Theorem 3.6. Every fuzzy filter \mathcal{F} of *X* satisfies for all $x, y, z \in X$:

$$y \le (xz)^* \Rightarrow \mathcal{F}(z) \ge \min\{\mathcal{F}((x), \mathcal{F}(y)\}\}$$

Proof. Let $x, y, z \in X$ satisfy $y \le (xz)^*$ for all $y \in X$. Since \mathcal{F} is order preserving, $\mathcal{F}(y) \le \mathcal{F}(xz)^*$. it follows from Lemma 3.2 that

 $\mathcal{F}(z) \ge \min\{\mathcal{F}(xz)^*, \mathcal{F}(x)\} \ge \min\{\mathcal{F}(y), \mathcal{F}(x)\}$

This completes the proof.

FUZZY SATISFACTORY FILTERS

Definition 4.1. A fuzzy subset \mathcal{F} in X is said to be a *fuzzy filter* of X, if it satisfies:

FF-1 $\mathcal{F}(1) \ge \mathcal{F}(x)$, FF-2 $\mathcal{F}(x) \ge min\{\mathcal{F}((x^*y^*)^*), \mathcal{F}(y)\}$, for all $x, y \in X$.

Example 4.2. Let $X = \{0, a, b, 1\}$ be a bounded *BCK*-algebra with * defined by

*	0	a	b	1
0	0	0	0	0
а	а	0	а	0
b	b	b	0	0
1	1	b	а	0

Define \mathcal{F} of Xby $\mathcal{F}(1) = 0.6$ and $\mathcal{F}(0) = \mathcal{F}(a) = \mathcal{F}(b) = 0.5$. Routine calculations give that \mathcal{F} is a fuzzy satisfactory filter of X.

Example 4.3. Let $X = \{0, a, b, c, 1\}$ be a bounded *BCK*-algebra with * defined by

*	0	a	b	С	1
0	0	0	0	0	0
а	а	0	0	0	0
b	b	а	0	а	0
С	С	С	С	0	0
1	1	С	С	a	0

Define \mathcal{F} of $Xby\mathcal{F}(1) = \mathcal{F}(c) = 0.6$ and $\mathcal{F}(0) = \mathcal{F}(a) = \mathcal{F}(b) = 0.5$. Routine calculations give that \mathcal{F} is a fuzzy satisfactory filter of X.

We can generalize above examples as follows.

Theorem 4.4. Let *F* be anon empty subset of *X* and let \mathcal{F}_F be a fuzzy subset of *X*, defined by $\mathcal{F}_F(x) = \begin{cases} s & \text{if } x \in F, \\ t & \text{otherwise,} \end{cases}$ for all $x \in X$ and $s, t \in [0,1]$ with s > t. Then \mathcal{F}_F is a fuzzy satisfactory filter of *X* if and only if *F* is a satisfactory filter of *X*.

Proof. Assume that \mathcal{F}_F is a fuzzy satisfactory filter of *X*. Obviously $\mathcal{F}_F(1) = s$, and so $1 \in F$. Let $x, y, z \in X$ satisfy $(x(y(yz)^*)^*)^* \in F$ and $1 \in F$. Then $\mathcal{F}_F((x(y(yz)^*)^*)^*) = s$ and $\mathcal{F}_F(x) = s$. it follows form FF-2 that

$$\mathcal{F}_F((yz)^*) \ge \min \left\{ \mathcal{F}_F((x(y(yz)^*)^*), \mathcal{F}_F(x)) \right\} = s$$

So that $(yz)^* \in F$. Hence *F* is a satisfactory filter of *X*. Conversely suppose that *F* is a satisfactory filter of *X*. since $1 \in F$, we have $\mathcal{F}_F(1) = s \geq \mathcal{F}_F(x)$ for all $x \in X$.

Let $x, y, z \in X$. If $(x(y(yz)^*)^*)^* \in F$ and $x \in F$, then $(yz)^* \in F$. Thus

 $\mathcal{F}_{F}((yz)^{*}) = s = \min \{\mathcal{F}_{F}((x(y(yz)^{*})^{*}), \mathcal{F}_{F}(x))\}$

If $(x(y(yz)^*)^*)^* \notin F$ or $x \notin F$, then

 $\min \{\mathcal{F}_F((x(y(yz)^*)^*), \mathcal{F}_F(x))\} = t \le \mathcal{F}_F((yz)^*)$

Therefore \mathcal{F}_F is a fuzzy satisfactory filter of *X*.

Theorem 4.5. Let \mathcal{F} be a fuzzy set of *X*. Then \mathcal{F} is a fuzzy satisfactory filter of *X* if and only if \mathcal{F}_t is a satisfactory filter of *X* where $\mathcal{F}_t \neq \emptyset$.

Proof. Assume that \mathcal{F} is a fuzzy satisfactory filter of X and $\mathcal{F}_t \neq \emptyset$ for all $t \in [0, 1]$, Obviously $1 \in \mathcal{F}_t$. Let $x, y, z \in X$ satisfy $((x(y(yz)^*)^*)^* \in \mathcal{F}_t \text{ and } x \in \mathcal{F}_t \text{ . using FF-2, we get})$

 $\mathcal{F}((yz)^*) \ge \min \left\{ \mathcal{F}((x(y(yz)^*)^*), \mathcal{F}(x)) \le t \right\}$

And so $(yz)^* \in \mathcal{F}_t$. Hence \mathcal{F}_t is a satisfactory filter of *X*. Conversely suppose that $\mathcal{F}_t \neq \emptyset$, for all $t \in [0, 1]$. We claim that FF-1 and FF-2 are valid. If FF-1 is not valid. If FF-1 is not valid, $\mathcal{F}(1) < F(x_0)$ then for some $x_0 \in X$. Let $t_0 = \frac{1}{2} \{\mathcal{F}(1) + (x_0)\}$. Then $t_0 \in [0, 1]$ and $\mathcal{F}(1) < t_0 < F(x_0)$, which implies that $x_0 \in \mathcal{F}_{t_0}$ and so $\mathcal{F}_{t_0} \neq \emptyset$. Since \mathcal{F}_{t_0} is a satisfactory filter of *X*, $1 \in \mathcal{F}_{t_0}$. Thus $\mathcal{F}(1) \ge t_0$ which is a contradiction. Therefore FF-1 holds. Suppose that FF-2 is false. Then there are $x_0, y_0, z_0 \in X$ such that

 $\mathcal{F}((y_0 z_0)^*) < \min \left\{ \mathcal{F}((x_0 (y_0 (y_0 z_0)^*)^*), \mathcal{F}(x_0)) \right\} \ge t$

Takings₀ = $\frac{1}{2}$ { $\mathcal{F}((y_0z_0)^*)$ + min { $\mathcal{F}((x_0(y_0(y_0z_0)^*)^*), \mathcal{F}(x_0))$ }, wegets₀ \in [0, 1]and

 $\mathcal{F}((y_0 z_0)^*) < s_0 < \min \left\{ \mathcal{F}((x_0 (y_0 (y_0 z_0)^*)^*), \mathcal{F}(x_0)) \right\}$

It follows from the right-hand side of the above inequality that

 $(x_0(y_0(y_0z_0)^*)^*)^* \in \mathcal{F}_{s_0} \text{ and } x_0 \in \mathcal{F}_{s_0}$

So from F-4 that $(y_0z_0)^* \in \mathcal{F}_{s_0}$. Thus $\mathcal{F}((y_0z_0)^*) \ge s_0$ so, which is impossible. Hence FF-2 is also valid. Consequently, \mathcal{F} is a fuzzy satisfactory filter of X.

Theorem 4.6. Assume that *X* is commutative. Then every fuzzy filter \mathcal{F} of *X* is a fuzzy satisfactory filter of *X* if and only if satisfies the following inequality for all $x, y \in X$, $\mathcal{F}((xy)^*) \ge \mathcal{F}(x(xy)^*)^*$.

Proof. Assume that \mathcal{F} is a fuzzy satisfactory filter of X. Then the inequality is satisfied straightforward. Conversely suppose that the inequality is satisfied, then by Lemma 3.2., we have $\mathcal{F}((yz)^*) \ge \mathcal{F}(y(yz)^*)^* \ge \min \{\mathcal{F}((x(y(yz)^*)^*), \mathcal{F}(x))\}$ for all $x, y, z \in X$. Hence \mathcal{F} is a fuzzy satisfactory filter of X.

Theorem 4.7. If X is commutative. Then every fuzzy satisfactory filter of X is a fuzzy filter of X.

Proof. Let \mathcal{F} be a fuzzy satisfactory filter of X and let $x, y \in X$. Since $((x)^*)^* = x$, we get $(xy)^* = (x((((y)^*)^*)^*)^*)^*$. It follows from FF-2 that

 $\mathcal{F}(y) = \mathcal{F}(((y)^*)^*) \ge \min \left\{ \mathcal{F}((xy)^* = (x((((y)^*)^*)^*)^*, \mathcal{F}(x)) \right\}$

$$= \min \left\{ \mathcal{F}((xy)^*, \mathcal{F}(x)) \right\}$$

So, from Theorem 3.5. that \mathcal{F} is a fuzzy filter of X.

The converse of Theorem 4.7. may not be true as seen in the following example.

Example 4.8. Let $X = \{0, a, b, 1\}$ be a set with * defined by

*	0	а	b	1
0	0	0	0	0
а	а	0	0	0
b	b	а	0	0
1	1	b	а	0

Then X is a bounded *BCK*-algebra (see [14]). Define \mathcal{F} of $Xby\mathcal{F}(1) = 0.6$ and $\mathcal{F}(0) = \mathcal{F}(a) = \mathcal{F}(b) = 0.5$. Routine calculations give that \mathcal{F} is a fuzzy filter of X. But it is not a fuzzy satisfactory filter of X. In fact, note that $(b(((ba)^*)^*)^*)^* = (b(a)^*)^* = (bb)^* = 0^* = 1$ and $(ba)^* = a^* = b$. Hence

$$\mathcal{F}((ba)^*) = 0.6 > 0.5 = \min \left\{ \mathcal{F}((((b(ba)^*)^*)^*, \mathcal{F}(1)) \right\}$$

We give conditions for a fuzzy filter of X. is a fuzzy satisfactory filter of X.

Theorem 4.9.Let *X* be commutative and positive implicative, then every fuzzy filter of *X* is a fuzzy satisfactory filter of *X*.

Proof. Let \mathcal{F} be a fuzzy filter of X. Since

$$(yz)^* = (z^*y^*)^* = ((z^*y^*)^*y^*)^* = (yz)^*y^*)^* = ((y(yz)^*)^*$$

for all $x, y, z \in X$, it follows from Lemma 3.2 that

 $\mathcal{F}((yz)^*) = \mathcal{F}(((y(yz)^*)^*) \ge \min \{\mathcal{F}((x(y(yz)^*)^*)^*), \mathcal{F}(x)\}$ so that \mathcal{F} is a fuzzy satisfactory filter of X.

Theorem 4.10.Let X be commutative and F be a filter of X. Then \mathcal{F} is a fuzzy satisfactory filter of X if and only if it satisfies for all $x, y \in X$

 $\mathcal{F}((xy)^*) \ge \mathcal{F}(((x(xy)^*)^*) \quad (2)$

Proof. Let *F* be a fuzzy satisfactory filter of *X*. Then

 $\mathcal{F}((xy)^*) \ge \min \{\mathcal{F}((((x(xy)^*)^*)^*), \mathcal{F}(1))\}$

$$= \min \left\{ \mathcal{F}((x(xy)^*)^*), \mathcal{F}(1) \right\}$$

 $= \min \left\{ \mathcal{F}((x(xy)^*)^*) \right\}$

for all $x, y \in X$. Conversely suppose that \mathcal{F} is a fuzzy filter of *X* that satisfies (2). Using (2) and Lemma 3.2. we have

$$\mathcal{F}((yz)^*) \ge \mathcal{F}(((y(yz)^*)^*) \ge \min \{\mathcal{F}((x(y(yz)^*)^*), \mathcal{F}(x))\}$$

Hence \mathcal{F} is a fuzzy satisfactory filter of X.

- 2. Ahmad, B. 1982. Dual ideals in BCK-algebra II, Math. Seminar Notes, 10, 653-655.
- 3. Ahmed, B. 1982. Characterizations of dual ideals in *BCK*-algebras, Math. Seminar Notes, 10, 647-652.
- 4. Deeba, E. Y. 1979. A characterization of complete *BCK*algebra, Math. Seminar Notes (presently, Kobe Jr. of Maths), 7, 343-349.
- 5. Imai Y. and Ise'ki, K. 1966. On axiom systems of propositional calculi XIV, *Proc. Japan Acad.*, 42, 26-29.
- 6. Ise'ki, K. 1966. An algebra related with a propositional calculus, *Proc. Japan Acad.*, 42, 351-366.
- 7. Iseki K. and Tanaka, S. 1976. Ideal theory in *BCK*-algebras, *Math. Japon.* 21, 351-366.
- Iseki K. and Tanaka, S. 1978. An introduction to the ideal theory of *BCK*-algebras, *Math. Japon.* 23(1), 1-26.

- Jun, Y. B. 2004. Satisfactory filters of *BCK*-algebras, Math. Japon., 59(1), 113-119.
- 10. Jun, Y. B. Hong S. M. and Meng, J. 1998. Fuzzy *BCK*-filters, Math. Japon., 47 (1), 45-49.
- 11. Jun, Y. B. Meng J. and Xin, X. L. 1998. On fuzzy *BCK*-filters, *Korean J. Comput. Appl. Math.*, 5 (1) 91-97.
- Meng, J. 1994. On ideals in *BCK*-algebras, Math. Japon., 40(1), 143-154.
- 13. Meng, J. 1996. BCK-filters, Math. Japon., 44, 119-129.
- 14. J. Meng and Y. B. Jun, *BCK*-algebras, Kyungmoonsa Co. Korea.
- Roh E. and Jun, Y. B. 1997. On *BCK*-filters, Far East J. Math. Sci. II, 181-188.
- 16. Xi, O. G. 1991. Fuzzy BCK-algebras, Math. Japon., 36, 935-942.
- 17. Zadeh, L. A. 1965. Fuzzy sets, Inform. Control, 8 (1965), 338-353.

International Journal of Science Academic Research, Vol. 02, Issue 05, pp.1447-1450, May, 2021