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Abstract 
 

The study of sectional curvature is considered an important study as it is used in many sciences such as engineering, physics and mathematics. 
Sectional curvature has several types, including positive, non-positive (negative) and non-negative sectional curvature. This study deals with 
non-positive sectional curvature and is considered an addition to what was presented in this field .The aims of this paper is to calculate the non-
positive sectional curvature by using Matlab. It also aims to find some applications of non-positive sectional curvature .We followed the applied 
mathematical method using Matlab. Also we showed the calculation of Non –Positive Sectional Curvature using Matlab and their some 
applications by following descriptive approach in order to achieve the stated objectives of the paper, and we found the following some results: 
Matlab gives precise results of high speed compared with that of Manual, Also stated the ability and capability of  Graphs or Diagram drawing to 
any curvature via Matlab. Explained the possibility of  the calculation of  Non –Positive Sectional Curvature  by Matlab with a very high rate and 
accuracy also shed lights on as  Cartan –Hadamard theory which is considered one of the most important applications regarding  Non –Positive 
sectional curvature.  
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1. INTRODUCTION  

 
In 1928 Elie Cartan proved the Cartan- Hadamard theorem : if 
� is a complete manifold with non-positive sectional curvature 
then its universal cover is diffeomorphic to a Euclidean space 
in particular it is a spherical the homotopy groups π� (�) for 
i≥ 2 ��� trivial therefore the topological structure of complete 
non-positively Curved manifold is determined by its 
fundamental group preissman`s theorem restricts the 
fundamental group of negatively curved compact manifold the 
Cartan-Hadamard conjecture states that the classical 
isoperimetric inequality should hold in all simply connected 
space of non-positive curvature which are called Cartan-
Hadamard manifold. 
 
Theorem(1.1): 
 
(Cartan- Hadamard). Let (�, g) be a complete Riemannian 
manifold with non-positive sectional curvature, then for any p 
∈ �, the exponential map exp p : T p � → � is a covering map. 
In particular, if � is also simply connected, then exp p is a 
differmorphism (and thus � is non-compact). Before we prove 
the Cartan -Hadamard theorem, we need the following lemma 
saying that any non-positive curvature manifold has no 
conjugate point. (Recall we showed this for non-positive 
constant curvature case by explicitly computing the Jacobi 
fields.) 
 
Example(1.2): 
 

Let � be a Riemannian manifold of non-positive sectional 
curvature, I, e. K( ∏ ) ≤ 0 for any 2-plane ∏ ⊂ TM . 
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(a) Let c : [�, �] → M be a geodesic and let J be a Jacobi field 

along c. Let f (t) =‖�(�)‖�. Show that �//(t) ≥ 0, I .e ., f is 
a convex function . 

(b) Derive from (a) that M does not a dmit conjugate points . 
 
Solution 
 

�/ (t) = 
�

��
│

���
 〈�(�), �(�)〉 = 2 〈

�

��
�(�), �(�)〉 

 
and 

�//(t) = 2( 〈
��

���  �(�), �(�) +  �
�

��
�(�)�

�
〉) 

 
Using Jacobi equation, we conclude 
 

�//(t) = 2(- 〈�(�(�), �\(�)�\(�), �(�)〉 +�
�

��
�(�)�

�

) 
 

We have 〈� ��(�), �\(�)� �\(�), �(�)〉 = 0 if J(t), �\(�) are 

linear dependent and, otherwise, for 
∏ = span (J(t), �\(�) ⊂ ��(�)�) . 
 

〈� ��(�), �\(�)� �\(�), �(�)〉 = K (∏)(‖�(�)‖���\(�)�
�
-(〈�(�), �\(�)〉�) ≤ 0, 

 

Since sectional curvature is non-positive. This shows that 
�//(t), as a sum of two non-negative term, is greater than or 
equal to zero.  
 

If there were a conjugate point q = c(��) to point p = c(��) 
along the geodesic c, then we would have a non –vanishing 
Jacobi field J along c with J(��) = 0 and J(��) = 0. This would 
imply that the convex, non – negative function f (t) = ‖�(�)‖� 
would have zeros at t = �� and t= ��. This would force f to 

vanish identically on the interval ���,���, which would imply 

that J vanishes as well, which leads to a contradiction [4] .  



Corollary (1.3): 
 
Let (�, g) be a complete simply connected flat manifold then 
(�, g) is isometric to (IR n , ��). 
 
Proof: 
 
Choose any p. Identify T p M with IR n and let �̅ = exp∗ p g on 
IR n. We have already proved that the map 
 
Exp p : (IR n, �̅) → (�, g) 
 
is both a diffeomorphism and a local isometry. So it is a global 
isometry. Since g is flat, �̅ is then a flat metric on IR n. But two 
flat metrics on IR n differ only by a linear isomorphism. 
 

2. Approach to Hyperbolic in an Integral Sense 
 
Recall that the goal of the cross curvature flow is to deform a 
metric with negative sectional curvature on a 3-manifold to a 
hyperbolic metric. We show that an integral measure of the 
difference of the metric from hyperbolic is monotone 
decreasing. Let 
 

J = ∫ (
�

�
− (��� �) 1/3 �µ 

�
   (1) 

 
where P = g I j P I j. By the arithmetic-geometric mean 
inequality (applied in a basis in which P I j is diagonal and g I j 
= δ I j), the integrand is nonnegative, and identically zero if and 
only if P I j = 1/ 3P g I j, i.e., g I j has constant curvature.[5]  
 

Theorem( 2.1  ) : Under the cross curvature flow 
��

��
 ≤ 0. 

 
Proof: 
 
We compute 
 
�

��
 ∫ � �µ 

�
 = ∫ [(�����) ���  + ��������  +  � � ]�µ 

�
 

 

= ∫ [2ℎ�����  + ��� (− ��� � ���  −  � ���)  +  � � ]�µ
�

 

 

= 3 ∫ ��� � �µ.
�

 

 
By the definition of h I j we can replace det P by (det h) 1/3 
(det P) 1/3. when η = 1/3 we find that 
 
��

��
 = −

�

�
∫ ( ����� − �����

�
 +  

�

�
 ⌊��⌋�) (��� �) 1/3 �µ

�
 

 

− ∫ (
�

�
 −  (��� ℎ)1/3) (��� �) 1/3 �µ

�
. 

 
This is non positive (and if and only if g I j has constant 
negative sectional curvature). 
 
i. A maximum Principle Estimate 
 
We can also obtain information about the long-time behavior 
of geometric flows like the XCF by using the maximum 
principle for parabolic equations. That typically involves 
finding a function f(x, t), constructed tensorially from the 
metric and its derivatives, which satisfies an inequality of the 
form ∂t f ≥ ∆f. Since the higher order terms in the evolution of 

P I j are of divergence form with both first and second order 
terms, in comparison to the Ricci flow, it is much more 
difficult to obtain good maximum principle estimates. But, as 
we show next, there is at least one function which, under the 
XCF, satisfies an equation for which the maximum principle 
can be applied. At the end of this section we use the maximum 
principle to show that the XCF preserves the set of metrics of 
negative sectional curvature unless singularities arise in finite 
time [3]. 
 

Lemma(2.2): Let (�n, g) be Riemannian manifold 
 

(a) If the Ricci curvature is positive, then the identity map 
 

I :(�, g I j)→ (�,gi j) is harmonic, and if the Ricci curvature is 
negative then I :(h, g I j)→ (�,g I j) is harmonic. 
 

(b) If n = 3 and the sectional curvature is negative (or 
positive), then 
 

I:(�, g I j) → (� g I j) is harmonic. [18] pp23. 
 

3. Parallelism and Geodesics 
 
Having introduced two fundamental notions of Riemannian 
geometry, the Riemannian metric tensor and its associated 
Riemannian connection, we are now in a position to examine 
some geometric notions beyond those of length and angle 
introduced in Sect. In particular, we will define geodesics, the 
analogue of “straight lines” in the context of “curved space.” 
This concept relies heavily on the notion of the covariant 
derivative introduced .In order to generalize the notion of a 
line to the setting of a Riemannian space, we first need to have 
a sense of what qualities of a line we hope to generalize. In 
fact, as with many fundamental notions, the concept of a line 
unites a number of seemingly distinct properties. In Euclid’s 
axiomatic geometry, a line is completely described by two 
distinct points. In this setting, two lines are parallel if they 
have no point of intersection. In the analytic description of 
Euclidean geometry, a (non vertical) line is described by one 
point and a number, the slope; two distinct lines are parallel if 
they have the same slope. 
 
In the vector geometry of R3, a line can be characterized by one 
point (represented by a position vector) and a unit “direction” 
vector. Two lines can then be said to be parallel if their 
direction vectors are the same, up to sign. Key to this notion is 
the ability to compare the direction vectors at different points 
in IR3. Another property of a Euclidean line might be offered 
by physics. A particle’s motion is linear if its acceleration at 
each point is zero. This is essentially Newton’s first law. For 
the notions introduced in this section, we will consider vector 
fields V defined along a curve. Let c:I→Rn be a smooth 
parameterized curve. A vector field alongcis a map V: I → T 
IR n, given by T → V ( t ) ∈ Tc ( t ) IR n, which is smooth in 
any of the obvious senses from that the component functions 
Vi ( t ) relative to a coordinate basis of T c ( t ) IRn are smooth 
functions of t. Such might be the case, for example, for a 
vector field V defined on IR n and then restricted to a 
parameterized curve c : I → IR n, i.e., V ( t )= V ( c ( t )) for all 
t ∈ I. However, vector fields along a curve need not arise in 
this way. For a smooth parameterized curve c : I → IR n, the 

velocity vector fielḋc ( t )=( c ∗ ) 
��

��
  (also denoted by 

��

��
 ), 

where 
��

��
 is the standard basis vector field on T IR 1, is a case in 

point.  
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In coordinates,  

c(t) = ∑
��

��
 

�

���
,�

���  ̇when c (t) = (��(�) … … … … … … . . ��(�)). 

This vector field is not defined for points not on c ( I ) It is not 
hard to see that the definition of the covariant derivative ∇ x y 
extends directly to vector fields x, y along a curve c. With this 
in mind, we define the derivative of a vector field V along the 
curve c to be 
 

��

��
= ∇�(�)� 

 
We obtain 
 

.
��

��
 = ∑ (

���

��
 + ∑ Γ�,�

�
�,� ,

���

��
 ))

�

���
,�

���  

 

Where V ( t ) = ∑ ��  
�

���
 . Note that when V is a vector field on 

IR n restricted to a curve c : I → IR n, we have 
 

���

��
= �

���

���

 
���

��
, 

 
Definition ( 3.1): Let V be a vector field along a parameterized 
curve 
 

c : I → IR n. Then V is parallel along c if 
��

��
 = 0 for all t ∈ I . 

 
 
 
 
 
 
                  V(t) 
 
 
 
 
           C(t) 
 
 

Figure 3.1. A parallel vector field V along a curve c with the 
standard Euclidean metric 

 
The terminology is suggestive here: V is parallel along c if it is 
“constant along c.” We will see shortly that this version of 
“constant” is closely related to the geometry and, specifically, 
to the metric tensor. The condition for v to be parallel along c 
can be expressed, using coordinates, by saying that the 
components v I of v are solutions to the first-order system of 
differential equations 
 

⎩
⎪
⎨

⎪
⎧

����

��
+ � Γ��

� ���

��
�� = 0

�,�

���

��
+ � Γ��

� ���

��
�� = 0

��

� 

 
We illustrate the impact of the metric tensor on this notion of 
parallelism with two examples [1] pp224to226. 
 

4. Geodesics and Curvature 
 

Let � = (�, �) → � be a smooth path. The energy of Y is 

� (�) =
1

2
� �� ∗ �

�

ð�
��

�

�

�� 
�  

 
And the length is 
 

� (�) = � �� ∗ �
�

ð�
��

�

�

�� 

 
A geodesic is a path which locally minimizes the length in the 
following sense. A variation of Y is a function � = (−�, �) ×
(�, �) → � so that �(0, �) = �(�). The infinitesimal variation 
of Y corresponding to F is the vector field along �, � = � ∗

�
�

ð�
�. We denote by T is the tangent vector field along �, � =

� ∗ �
�

ð�
�. We have the following two important formulae. The 

first variational formula for the energy: 
 
Lemma ( 4.1): 
 

�

ð�
�(��) = − � < �, ∇�� > ��+< �, � > |�

�

�

�

 

 
And the first variational formula for the length: 
 

�

ð�
�(��) = − � < �, ∇�/|�|� > +< �, �/|�| > |�

�

�

�

 

 
Proof. 

�

ð�
�(��) = � < �, ∇�� > ��

�

�

 

= � < �, ∇�� > ��

�

�

 

= � �
�

ð�
< �, � > −<, ∇�� >� ��

�

�

 

=< �, � > |�
� − � <, ∇��, � > ��

�

�

 

 
The proof for the length is similar and left to the reader. As a 
consequence we have that Y is a geodesic if and only if 
 

∇�(�/|�|) = 0 
 
In other words the unit tangent vector to y is parallel along Y if 
we parameterize Y proportional to are length then ∇�� = 0. 
We also have the second variational formula [2] pp 20 to 23. 
 
Definition (4.2): By definition, of n –dimensional manifold of 
constant curvature κ is a length space X that is locally 
isometric to ��

�.  
In other words, for every point x ∈ X there is an ε> 0 and an 
isometry φ from B (x, ε) onto a ball B ( φ ( x), ε) ⊂ ��

�
. 

 
Theorem (4.3): Let X be a complete, connected, n-
dimensional manifold of constant curvature κ. When endowed 
with the induced length metric the universal covering of X is 
isometric to ��

�
. 
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Proof 
 
The following proof is due to C. Ehresman. In the fi rst part of 
the proof we do not assume that X is complete. By definition, a 
chart φ : u → ��

� is an isometry from an open set U ⊆ X onto 
an open set φ( u ) ⊆ M n

κ .If φ : u → M n
κ is another chart and 

if u ∩ ��  is connected, then there is a unique isometry g ∈ 
Isom( M nκ ) such that φ and g ◦ φ are equal on u ∩ �� . Consider 
the set of all pairs (φ, x), where φ : u → M nκ is a chart and x ∈ 
u .We say that two such pairs (φ, x ) and (φ, x ) are equivalent 
if x = �̀ and if the restrictions of φ and �́ to a small 
neighbourhood of x coincide. This is indeed an equivalence 
relation and the equivalence class of (φ, x ) is called the germ 
of φ at X. Let ˆ X be the set of all equivalence classes, ie. the 
set.[12] pp45to46. 
 
Lemma (4.4): Let (�, g) be as above. Then for any p ∈ �, p 
has no conjugate point along any geodesic emanating from p. 
 
Proof: 
 
Let γ be a geodesic emanating from p and X be a normal 
Jacobi field along γ with X(0) = 0. Let f(t) = (X(t), X(t)).Then 
�/ (t) = 2(∇γ˙ ∇γ X, X) 
 
and thus 
 
�//(t) = 2(∇γ˙ ∇γ˙ X, X) + 2|∇γ˙ X| 2 
= −2R( ˙γ, X, γ, X˙ ) + 2|∇γ˙ X| 2 ≥ 0. 
 
Since �/ (0) = 0, we must have f (t) ≥ 0 for all t > 0, i.e. f is 
non-decreasing. But we also know that for t small enough, f(t) 
> 0 since the zeroes of a Jacobi field is discrete. If follows that 
f(t) > 0 for all t. In other words, X has no zero along γ. So p 
has no conjugate point along γ. 
 
Proof of the Cartan- Hadamard Theorem. According to 
lemma(6.1.5), 
 
Exp p : T p � → � 
 
is a local diffeomorphism everywhere. Let �̅ = (exp p ) ∗ g, 
then �̅ is a Riemannian metric on T p � such that 
 
exp p : (T p �,�̅) → (�, g) 
 
is a local isometry. Note that the geodesics in (T p �, �̅) 
passing 0 ∈ T p � are exactly the straight lines passing 0, which 
are defined for all t. It follows that exp0 is defined for all X0 ∈ 
T0(T p �). According to the Hopf-Rinow theorem, (T p �, �̅) is 
complete. It follows from Ambrose Theorem that exp p : T p � 
→ � is a covering map. 
 
If � is simply connected, then any covering map to � must be a 
global homeomorphism. Since expp is also a local 
diffeomorphism, it must be global diffeomorphism. 
 
Example(4.5): Let � be a Riemannian manifold of non-
positive sectional curvature, I, e. K( ∏ ) ≤ 0 For any 2-plane ∏ 
⊂ TM . 
 
(a) Let c : [�, �] → M be a geodesic and let J be a Jacobi field 

along c. Let f (t) =‖�(�)‖�. Show that �//(t) ≥ 0, I .e ., f is 
a convex function. 

(b) Derive from ( a ) that M does not a dmit conjugate points . 
  
Solution 
 

�/ (t) = 
�

��
│

���
 〈�(�), �(�)〉 = 2 〈

�

��
�(�), �(�)〉 

 
and 

�//(t) = 2( 〈
��

���  �(�), �(�) +  �
�

��
�(�)�

�
〉) 

 
Using Jacobi equation, we conclude 
 

�//(t) = 2(- 〈�(�(�), �\(�)�\(�), �(�)〉 +�
�

��
�(�)�

�

) 

 

We have 〈� ��(�), �\(�)� �\(�), �(�)〉 = 0 if J(t), �\(�) are 

linear dependent and, otherwise, for 
 

∏ = span (J(t), �\(�) ⊂ ��(�)�) . 

 
〈� ��(�), �\(�)� �\(�), �(�)〉 = K ( ∏ )(‖�(�)‖���\(�)�

�
-(〈�(�), �\(�)〉�) ≤ 0, 

 
Since sectional curvature is non-positive. This shows that 
�//(t), as a sum of two non-negative term, is greater than or 
equal to zero. (b) If there were a conjugate point q = c(��) to 
point p = c(��) along the geodesic c, then we would have a non 
–vanishing Jacobi field J along c with J(��) = 0 and J(��) = 0. 
This would imply that the convex, non – negative function f (t) 
= ‖�(�)‖� would have zeros at t = �� and = ��. This would 

force f to vanish identically on the interval ���,���, which would 
imply that J vanishes as well, which leads to a contradiction 
[3] .pp 1to 2. 
 

5. Matlab Solution  
 
Algorithm1 
 
% Let ? be a Riemannian manifold of non-positive sectional 
curvature, I, e. K( ? ) ? 0 For any 2-plane ? ? TM . 
 
clear all 
clc 
syms t0 tl t d D f J f1 f2 d dt D(d,x) J1 J2 y x c(t) K(n) R(x,y) 
span span(x,y) n j(t) z(x,y) Z 
 
% Let c : [a,b] ? M be a geodesic and let J be a Jacobi field 
along c. 
t=1 
f(t)= (abs(t))^2 
f1= diff(f(t)) 
f2=diff(diff(f(t))) 
 
% Since f^/ (0) = 0, we must have f (t) ? 0 for all t > 0, i.e. f is 
non-decreasing. But 
% we also know that for t small enough, f(t) > 0 since the 
zeroes of a Jacobi field is discrete. 
% If follows that f(t) > 0 for all t. In other words, X has no 
zero along ?. 
 
x=j(t) 
y=c(t) 
n=span(x,y) 
d=R(x,y)*y 
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J1 = D(d,x) 
Z=z(x,y) 
J2 = (K(n) * (abs(x))^2 * (abs(y))^2) - Z^2 
 
The result 
 
t = 
1 
 
f = 
1 
 
f1 = 
0 
 
f2 = 
0 
 
x = 
j(1) 
 
y = 
c(1) 
 
n = 
span(j(1), c(1)) 
 
d = 
c(1)*R(j(1), c(1)) 
 
 
J1 = 
D(c(1)*R(j(1), c(1)), j(1)) 
 
Z = 
z(j(1), c(1)) 
 
J2 = 
K(span(j(1), c(1)))*abs(c(1))^2*abs(j(1))^2 - z(j(1), c(1))^2 
 
Lemma (5.1):Assume that the sectional curvature of ( N, h ) is 
non- positive, and �: ( M, g) →( M, h) is abiharmonic 

mapping. then, it hold that ∆ |�(�)|� ≥ 2�∇ T (φ)̈ �
�
 

 
In M .Here, ∆ = ∑ (��

��
��� − ∆����) is the Laplace –Beltrami 

operator of (M, g). 
 
Proof : 
 
Let us take a local orthonormal frame field (��)��= 1 on M, 
and � : (M, g) → (N, h), a biharmonic map, Then, for � =
�(�) ∈ ┌ (�����),we have 
 

1

2
 ∆ |�|� =  

1

2
 �(��

�

�

���

|�|� −  ∆�� ��|�|�) 

= �(��ℎ(∇����, �) −  ℎ(∇�∇�����, �))

�

���

 

 

�(ℎ(∇���∇����

�

���

, �) − ℎ(∇�∇���, �)) 

+ ∑ ℎ(∇���
�
��� �,∇����) 

 

=h(-∆��, �)+ |∇�����|� 
 
=h(-R(ν),ν) + |∇�����|� ≥ |∇�����|� 
 

Because for the second last equality, we used ∆�� – R(ν) = J(ν) 
= 0 for ν =T(�), due to the biharmonicity of � : (M, g) → (N, 
h), and for the last inequality, we used 
 
H(R(ν),ν) = ∑ ℎ(��(�, ��

��� , ��, �) ≤ 0 
 
Since the sectional curvature of (N, h) is non- positive.⌈11⌉ 
pp13to34. 
 
Matlab Solution (5.2): 
 
Algorithm2 
 
% Let (?, g) be as above. Then for any p ? ?, p has no 
conjugate point along any geodesic emanating from p 
clear all 
clc 
syms deltav v m i e s f1 f2 f f(x,y) t h(deltav,v) f3 R(v) 
 
% Let us take a local orthonormal frame field (e_i)i^m= 1 on 
M, and ? : (M, g) ? (N, h), a biharmonic map, Then, for 
V=T(?)?? (?^(-1) TN),we have 
 
f1 = 1/2 * (abs(v))^2 
f2 = h(deltav,v) + (abs(deltav))^2 
f3 = h(-R(v),v) + (abs(deltav))^2 
 
% Because for the second last equality, we used ? ?? – R(?) = 
J(?) = 0 for ? =T(?), due to the biharmonicity of ? : (M, g) ? (N, 
h), and for the last inequality, we used 
% H(R(?),?) = ?_(i=1)^m??h(R^N (?, ??,e_i,?) ?0 
% Since the sectional curvature of (N, h) is non- positive 
J(v) = deltav - R(v) == 0 
 
The result 
 
f1 = 
abs(v)^2/2 
 
f2 = 
abs(deltav)^2 + h(deltav, v) 
 
f3 = 
h(-R(v), v) + abs(deltav)^2 
 
J(v) = 
deltav - R(v) == 0 
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6. RESULTS 
 
After we showed the calculation of Non –Positive Sectional 
Curvature using Matlab we found the following some results : 
We showed that Matlab gives precise results of high speed 
compared with that of Manual, also we stated the ability 
capability of Graphs or Diagram drawing to any curvature via 
Matlab, we explained the possibility of the calculation of Non 
–Positive Sectional Curvature by Matlab with a very high rate 
and accuracy finally we shed lights on as Cartan –Hadamard 
theory which is considered one of the most important 
applications regarding Non –Positive sectional curvature. 
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