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Abstract 
 

The Applications of Non –positive Sectional Curvature plays a great role in the field of Physics, Mathematics and engineering because it paves to the knowledge of 
radius of curvature, length of curvature, and arc of curvature. The study aims to explain some applications of non- positive sectional curvature. We followed the 
analytical induction mathematical method. We found the following some results: The sectional curvature indicates to know the behavior of some of the functions 
and the solution of mathematics equations, and also it reveals the Euler – Lagrange equation which is considered one of the importance application of the non - 
positive sectional curvature. 
 

Keywords: Non –positive Sectional Curvature. 
 

 

INTRODUCTION  

 
We know that any two points in a connected, simply 
connected, complete manifold M of constant negative 
curvature can be connected by a unique geodesic. Thus, the 
entire manifold M is geodetically convex and its infectivity 
radius is infinity. This continues to hold in much greater 
generality for manifolds with non positive sectional curvature. 
It is convenient, at this point, to extend the discussion to 
Riemannian manifolds in the intrinsic setting. In particular, at 
some point in the proof of the main theorem of this section and 
in our main example, we shall work with a Riemannian metric 
that does not arise (in any obvious way) from an embedding. 
Euler-Lagrange equations. 
 
2. Differentiable Spaces with Non-Positive Curvature: 
 
The connection of present definition of non-positive curvature 
with the standard definition can easily be discussed by using 
the following lemma 
 
Lemma (2.1): If in a space with non-positive curvature, x(t) 
and y(t) represent geodesics with x(0) = y(0) then 
 
�(��)�(��)� =  �(� , �)                            (1) 
�, � ≠ 0 
 
Exists �(�, �) ≤ ⌊�⌋ + ⌊�⌋ 
And x(��)�(��) ≥ ��(� �) for small positive t.  
 
For x(��) �(��) is a convex function of t and has therefore at 
t=0 a right hand derivative �(� , �). The relation �(� , �) ≤
⌊�⌋ + ⌊�⌋ follows from x(��)�(��) ≤ ��� t > �, and follows 
form the fact ,that a convex function lies a above the right hand 
tangent at any of its point. In Riemann spaces non-positive 
curvature is equivalent to the ≤ cosine inequality≥ which can 
be formulated under very weak differentiability hypotheses 
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Lemma (2.2): A Riemann space has non-positive curvature in 
the present sense if and only if it has non-positive curvature in 
the usual sense. 
 
Proof 
 
If a Riemann space has non-positive curvature in the usual 
sense ,then holds locally ,where it is proved that holds in the 
large for simply connected spaces. This implies ,of course, that 
it hold in the small for general spaces. By the space has non-
positive curvature in the present sense. The converse can be 
proved to establish and then tracing Cartan s steps back. But it 
is simpler and geometrically more convincing the proceed as 
follows let x(t) and y(t) represent two geodesics which form at 
x(0) = y(0) the angle �. Then as in preceding proof 
 
�(�)�(�)

�
 =� (1 ,1) =⟦2(1 − ����)⟧

�

� = 2sin (
�

�
)            (2) 

 
Hence by 
 

X(t) y(t) ≥ 2t sin (
�

�
). 

 
That R has at p non-positive curvature means this if p is any 
two dimensional surface element at p then the two dimensional 
surface � foemed by all geodesics through p and tangent to p 
has at p a non-positive Gauss curvature. 
 
Take � geodesics ��(t) in � through p such that the angle 

formed by ��(t) and ��(t)at p is 
��

�
. If � is the length of circle 

with radius t about p in � then 
 

� > ∑ ��(�)����(�) ≥ 2�� ��� ( 
�

�
 ), hence 

 

� ≥ 2�� ��� � →  ∞. the well known expression of Bertrand 
and Puiseux for the Gauss curvature k 
 

� = 3���(2�� − �)���                             (3) 
 

Shows that � ≤ 0.  
 



3. Manifolds of Constant Curvature: 
 
Definition (3.1): By definition, an n –dimensional manifold of 
constant curvature κ is a length space X that is locally 
isometric to ��

�. In other words, for every point x ∈ X there is 
an ε> 0 and an isometry φ from B ( x ,ε) onto a ball B ( φ ( x ) 
,ε) ⊂ ��

�. 
 
Theorem (3.2): Let X be a complete, connected, n-
dimensional manifold of constant curvature κ. When endowed 
with the induced length metric, the universal covering of X is 
isometric to ��

�. 
 
Proof 
 
The following proof is due to C. E hresman. In the first part of 
the proof we do not assume that X is complete. By definition, a 
chart φ : u → ��

� is an isometry from an open set U ⊆ X onto 
an open set φ( u ) ⊆ M nκ. If φ : u → M nκ is another chart 
and if u ∩ � is connected, then there is a unique isometry g ∈ 

Isom (M nκ) such that φ and g ◦ φ are equal on u ∩ �. 
Consider the set of all pairs (φ, x), where φ : u → M nκ is a 
chart and x ∈ u. We say that two such pairs ( φ, x ) and ( φ, x ) 

are equivalent if x = �̀ and if the restrictions of φ and �́ to a 
small neighbourhood of x coincide. This is indeed an 
equivalence relation and the equivalence class of (φ, x) is 
called the germ of φ at X. Let ˆ X be the set of all equivalence 
classes, I e. the set.[3] pp45to46 
 
4. Euler-Lagrangian equations: 
 
A curve �(�) which minimises L (or, more generally, renders 
it stationary with respect to small variations)satisfies the Euler-
Lagrange equation 
 
�

��
�

��

��′
� =

��

��
                                      (4.1) 

 
where � = ((1 + ��)��� + ����)�/� . It is convenient to divide 
f by the constant(1 + ��)�/� . Note that thisleaves the Euler-
Lagrange equation unchanged, and amounts to rescaling the 
length L by a ¯x end factor. Let 
 

�� =
��

���� =
�����

�������
=

�����

�����
= �����                 (4) 

 
So that 
� =��� ��� �                                          (5) 
 
Then we may take 
� = (��� + ����)�/�                                    (7) 
 
Since f does not depend explicitly on ϕ, we may use the 
alternative form of the Euler-Lagrange equation, 
 

� −
��

�� ′
� ′ = �, �����                                   (8) 

 
After some calculation, this gives 
 

����

(��� + ����)�/� 
= �                                   (9) 

 
To solve the Euler-Lagrange equation, first observe that a 
specific case is �� = ��, i.e. the endpoints ofthe curve are on 

the same height. Then (9) admit s a trivial solution �(�) =
�����. However, it is in fact not a solution of the Euler-
Lagrange equation – this can be verified directly – unless c = 
0, hence z = 0! Indeed, consider the alternative form of the 
Lagrange equation (14) and differentiate it with respect to 

time. The result will be: either z'= 0, or 
�

��
��′ = ��, the Euler-

Lagrange equation. Thus, the alternative form of the Lagrange 
equations can generate a "rubbish" solution z = const; which 
should always be checked with the Euler-Lagrange equation 
�

��
��′ = ��. It is easy to see that if f is given by (7), the only 

constant solution of the Euler-Lagrange equation is z = 0, 
corresponding to the apex of the cone. 
 
But there are other, less trivial solutions of (9), and they are 
minimizers. This will not be show explicitly, but can be done 
using the unwrapping argument – after the cone having been 
unwrapped, the solutions we are about to find will become 
straight line segments that shall be glued along the edges of the 
sector, in the way described in the preamble. Let us express z0 
in terms of z from (9): 
 

��

��
= ±���

��

��
�� − 1 

 
In the boundary conditions (3.19), without loss of generality, 
we can assume �� ≥ ��. Then "+" corresponds to curves which 
go up (z increasing) in the anticlockwise (increasing- ∅) 
direction, and a "–" to curves which go up in the clockwise 
direction. It suffices to consider the "+" case, and we'll make 
the necessary remarks about the "–" case along the way after 
we see what's going on. In (3.20) variables separate, and it can 
be integrated as follows (using indefinite integrals for 
convenience) 
 

�
��

������/�� − 1
= �� + �� ≥ �� 

 
where ��is some constant of integration. Recall that 
 

�
��

�(�� − 1)�/� 
= ������, 

 
the inverse secant. Indeed, a trigonometric substitution 

� = ��� �yields �� =
������ ���  

���� �
 and reduces the aboveintegral 

to simply∫ ��. Similarly, 

 

�
��

������/�� − 1
= �����[(�/�)�]. 

 
Thus 
 

�� =
�

� ��� ��� (��+��) 
 

 
C and  ��are constants to be determined from the boundary 
conditions. The constant  ��is clearly definedup to a multiple 

of 2�, and in fact one can assume |�| <
�

�
. Adding �to 

 ��would negate the cosine and correspond to the choice of the 
"–" sign in (3.20). Also note that ��maybe not allowed to 
change continuously over an interval of values of length � and 
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longer, because otherwise, given �, the denominatorof (3.22) 
will zero at some point: e.g. the secant is only defined for 
|�� + ��| < � = 2.  
 
5. Euler Equation and Geodesics 
 
5.1. Variational Problems:  
 
The term calculus of variations was first coined by Euler in 
1756 as a description of the method that Joseph Louis 
Lagrange had introduced the previous year. The method was 
since expanded and studied by Euler, Hamilton, and others. As 
noted at the beginning of the chapter, the main idea is to 
determine which functions y(x) will minimize, or maximize, 
integrals of the form 
 

�[�] = �
�

�

���, �(�), �′(�)���, 

 

 
 
Where a, b, f (a), f (b), and f (x) are given. Integrals like J[y] 
are called functional s. This is a mapping from a function space 
to a scalar. J takes a function and spits out a number. An 
example of a functional is the length of a curve in the plane. As 
we will recall, the length of a curve y = y(x) from x = x1 to x = 
x2 is given by 
 

�[�] = �
��

��

�1 + �
��

��
�

�

��. 

 
This maps a given curve y(x) to a number, L. 
 
We are interested in finding the extrema of such functional s. 
We will not formally determine if the extrema are minimal or 
maxima. However, in most cases, it is clear which type of 
extrema comes out of the analysis. Further analysis of the 
second variation can be found elsewhere, such as Lancz s ’. 
For interesting problems, historical principle shave led to the 
formulation of problems in the calculus of variations, such as 
the Principles of Least Time, Least Action, Least Effort, or the 
shortest dis Euler equation and geodesics 3tance between 
geometric points on a surface. We will explore some standard 
examples leading to finding the extrema of functional s.  
 
6. Euler Equations 
 
In the previous examples we have reduced the problems to 
finding functions � = �(�)that extremize functionals of the 
form 
 

�[�] = �
��

��

��′(�)���. 

 
for F twice continuous (c2) in all variables. Formally, we say 
that J is stationary, 
 

��[�] = 0 
 
at the function � = �(�), or that the function � = �(�)that 
extremizes�[�]satisfies 
 

��

��
−

�

��
�

��

��′
� = 0 

This is called the Euler’s Equation. We will derive Euler’s 
Equation and then show how it is used for some common 
examples. The idea is to consider all paths connected to the 
two fixed points and finding the path that is an extremism of 
�[�]. In fact, we need only consider parametizing paths near 
the optimal path and writing the problem in a form that we can 
use with the methods for local extrema of real functions. 
 
Let’s consider the paths �(�; �) = �(�) + ��(�)near the 
optimal path� = �(�)with �(�) = �(�) = 0and �is C2. Then, 
we consider the functional 
 

�[�] = �[� + ��] ≡ ∅(�) 
 

 
 

Figure 1. Paths near an optimal path between two fixed points 
 
We note that if �[� + ��]has a local extremum at u, then u is a 
stationary function for J. This will occur when 
 
We compute this derivative and find 
 

�∅

��
=  

�

��
�

�

�

�(�, � + ��, �′ + ��′)�� 

 

= �
�

�

�

��
�(�, � + ��, �′ + ��′)�� 

 

= �
�

�

�
��

��

��

��
+

��

��′

��′

��
� �� 

 

= �
�

�

�
��

��
�(�) +

��

��′

��′

��
�′(�)� �� 

 
We can perform an integration by parts on the second integral 
in order to move the derivative off of�′(�). This is 

accomplished by setting �(�) =
��

��′and �� = �′(�)�� in the 

integration by parts formula. Then, 
 

�
�

�

��

��′
�′(�)�� = �(�)

��

��′
| −

�

��
�

��

��′
� �(�)�� 

 
The first terms vanish because�(�) = �(�) = 0. 
 

This leaves 
 

�∅

��
=  �

�

�

�
��

��
�(�) +

��

��′
�′(�)� �� 

 

=  �
�

�

�
��

��
−

�

��
�

��

��′
�� �′(�)�� 
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Evaluation at � = 0 gives 
 

�
�

�

�
��

��
−

�

��
�

��

��′
�� �′(�)�� = 0. 

 
Noting that �(�)is an arbitrary function and that this integral 
vanishes for all �(�), we can say that the integrand vanishes, 
 

��

��
−

�

��
�

��

��′
� = 0, 

 
for all � ∈ [�, �]. This is Euler’s Equation, (3). 
 
Because � = �(�, �(�), �′(�)), one can prove a second form 
of Euler’s 
 
Equation. We first note for the Chain Rule that 
 

��

��
=

��

��
+

��

��

��

��
+

��

��′

��′

��
 

 
Now we insert 
 

��

��
=

�

��
�

��

��′
� 

 
from Euler’s Equation to find 
 

��

��
=

��

��
+

��

��

��

��
+

��

��′

��′

��
 

 

=
��

��
+

�

��
�

��

�� ′
� �′ +

��

��′

��′

��
 

 
Rearranging this result, we obtain 
 

��

��
−

�

��
�� −

��

��′
�′� = 0 

 
This is the second form of Euler’s Equation. 
 

The second form of Euler’s Equation is handy when 
��

��
= 0,or 

when 
 
� = �(�, �′)is independent of x. In this case, we have 
 

� −
��

��′
�′ = �, 

 
Where c is an arbitrary constant. 
 
Special Cases: 
 

�(�, �) ⇒
��

��
= 0 

 

�(�, �′) ⇒
��

��′
= � 

 

�(�, � ′) ⇒ � −
��

��′
�′ = � 

 

�(�′) ⇒ �′′ = 0 

There are other special cases. In Euler’s Equation if � =
�(�, �′), 
 

��

��′
= � 

 
and when � = �(�, �), we have 
 

��

��
= 0 

 
Finally, when � = �(�′), Euler’s Second Equation implies 
 

�′′ = 0 
or �(�) = �� + ���. 
 
Example (6.1): 
 
Determine the closed curve with a given fixed length that 
encloses the largest possible area. The area enclosed by curve c 
is given by 
 

� =
1

2
�

�

(� �� − � ��)��. 

 
This was verified as an example of Green’s Theorem in the 
Plane, as 
 

�
�

� �� − ��� = �
�

�
��

��
−

�(−�)

��
� − ���� = 2 �

�

���� 

 
If the curve is parameterized as � = �(�)and � = �(�), then 
 

� =
1

2
�

�

(�ẏ − �ẋ)�� 

 
Also, the length of the curve is given as 
 

� =
1

2
�

�

��ẋ� − ẏ���� 

 
The problem can be mathematically stated as finding the 
maximum of �[�, �]subject to the constraint �[�, �]. This is 
equivalent to finding the path for which �[�, �] = �[�, �] +
��[�, �]is stationary for some constant �. Thus, we consider 
the integral 
 

�[�, �] = �
�

�
1

2
(�ẏ − �ẋ) + ���ẋ� − ẏ��� ��. 

 
We define the integrand 
 

�(�, �, ẋ, �, ẏ) =
1

2
(�ẏ − �ẋ) + ���ẋ� − ẏ�� 

 
The variational problem states that F satisfies a pair of Euler-
Lagrange equations: 
 

��

��
−

�

��
�

��

�ẋ
� + 0, 

 

��

��
−

�

��
�

��

�ẏ
� + 0 
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Inserting F, we have 
 

1

2
ẏ −

�

��
�

1

2
� +

�ẋ

�ẋ�+ẏ�
� = 0, 

 

−
1

2
ẋ −

�

��
�

1

2
� +

�ẏ

�ẋ�+ẏ�
� = 0 

 
Each of these equations is a perfect derivative and can be 
integrated. 
 
The results are 
 

� −
�ẋ

�ẋ�+ẏ�
= �1, 

 

� −
�ẏ

�ẋ�+ẏ�
= �2, 

 
Where c1 and c2 are two arbitrary constants. Rearranging, 
squaring both equations, and adding, we ha 
 

(� − �2)� + (� − �1)� =
��ẋ

�

ẋ�+ẏ� +
��ẏ

�

ẋ�+ẏ� = �� 

 

Therefore, the maximum area is enclosed by a circle [2]. 
 

7. Geodesics 
 
The shortest distance between two points is a straight line. 
Well, this is true in a Euclidean plane. But, what is the shortest 
distance between two points on a sphere? What path should 
light follow as it passes the sun? 
 
Paths that are the shortest distances between points on a curved 
surface or events in curved space time are called geodesics. In 
general, we can set up an appropriate integral to compute these 
distances along paths and seek the paths that render the integral 
stationary. We begin by looking at the geodesics on a sphere. 
 

Example (7. 1): Find the Christoffel symbols for the surface of 
a sphere. 
 
This is an example of how the general geodesic computation 
can be used for Riemannian metrics. First, we look at the 
geodesics found in 
 

��� ��� � ��� ��� � �
��

��
�

�

−
���

���
= 0 

 

�

��
�� 

��

��
� = 0.  (3.66) 

 
Solving for the second-order derivatives, we have 
 

���

���
−��� ��� � ��� ��� � �

��

��
�

�

= 0, 

 

���

���
+ � 

��

��

��

��
= 0 

 
The expanded forms of the geodesic equations for �and �are 
 
���

��� + ���
� ��

��

��

��
+ ���

� ��

��

��

��
+ ���

� ��

��

��

��
+ ���

� ��

��

��

��
= 0 

���

���
+ ���

� ��

��

��

��
+ ���

� ��

��

��

��
+ ���

� ��

��

��

��
+ ���

� ��

��

��

��
= 0 

 
Comparing these with the geodesics, we have that 
 

���
� = − ��� ��� � ��� ��� �, ���

�
= ���

�
=��� ��� � , 

 
and the rest of the Christoffel symbols vanish. 
 
Now we use Equation (34) to compute the Christoffel symbols. 
We first note that the metric is given by 
 

� = (1 0 0 � ) 
 
Because � is diagonal, the coefficients are relatively easy to 
find. In������

� , we note that � = �for non-vanishing 

contributions from the metric. So, this gives for � = 0 
 

������
� =

1

2
�
����

���
+

����

���
−

����

���
� 

 
Because � is independent of �, all �derivatives will vanish. 
Also, ���is the only coefficient that depends on �. So, the 

only time the right side of the equation does not vanish is for 
� = � = �. This leaves 
 

���
�

= −
����

���
= − ��� ��� � ��� ��� � 

 

Similarly, for � = �we have 
 

������
�

=
1

2
�
����

���
+

����

���
−

����

���
�, 

 
Using the same arguments about the derivative of the metric 
elements, we find one of �or �is �and the other is �. For 
example, 
 

������
�

=
1

2
�
����

���
+

����

���
−

����

���
�, 

 

� ���
�

=
1

2
(2 ��� ��� � ��� ��� � ), 

 

      ���
�

=��� ��� � 

 

Because ���
�

= ���′
�

we have obtained the same results based 

on reading the geodesic equation ⌊4⌋. 
 
8. The Levi-Civita Connection and its curvature 
 
The Einstein summation convention and the Ricci Calculus 
When dealing with tensors on a manifold it is convenient to 
use the following conventions. When we choose a local frame 
for the tangent bundle we writee1,... en for this basis. We 
always index bases of the tangent bundle with indices down. 
We write then a typical tangent vector 
 

� = �

�

���

����. 

 

Einstein’s convention says that when we see indices both up 
and down we assume that we are summing over them so he 
would write 
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� = ���� 
 
While a one form would be written as 
 

� = ���
� 

 
Where e i is the dual co-frame field. For example when we 
have coordinates 
 
x1, x2,…, x n then we get a basis for the tangent bundle 
�/���,…, �/��� 
 
More generally a typical tensor would be written as 
 

� = ���
� ������� �� 

 
Note that in general unless the tensor has some extra 
symmetries the order of the indices matters. The lower indices 

indicate that under a change of frame �� = ��
��� a lower index 

changes the same way and is called covariant while an upper 
index changes by the inverse matrix. For example the dual co-
frame field to the f I, called f I is given by 
 

�� = ��
��� 

 

Where ��
� is the inverse matrix to ��

� (so that ��
���

� = ��
�.) 

The components of the tensor T above in the f i basis are thus 
 

���
� � = ��′�′

�′ �′��′
� ��

�′
��

�′��′
�  

 
Notice that of course summing over a repeated upper and 
lower index results in a quantity that is independent of any 
choices. Given a vector bundle over our manifold which is not 
the tangent bundle or tensors on the tangent bundle we use a 
distinct set of indices to indicate tensors with values on that 
bundle. If V →M is a vector bundle of rank k with a local 
frame v a, 1 ≤ α ≤ r we would write 
 

� = ��
���ͼ��� 

 
for a typical section of the bundle T* M ͼ V 
 
Given a ∇ connection in V we write 
 

�� = ��
� ���ͼ��  

 
That is we think ∇s as a section of � ∗ � ͼ�as opposed to the 
possiblymore natural �ͼ � ∗ �. Or more concretely the semi-
colon is also indicating that the indices following the semi-
colon are to really be thought of coming first and the opposite 
order. Our convention here is designed to be more consistent 
with the mathematical literature. In the physics literature for 
example “Graviation” by Misner, Throne and Wheeler. So for 
a connection in the tangent bundle if we have a vector field 

with components �� we have write ��
� for the components of its 

covariant derivative. The Christoffelsymbols of a connection 
are the components of the covariant derivatives of the basis 
vectors: 

����� = ��
����  

 
 
 
 
 

Then we can write more explicitly 
 

��
� = ���

� + ��
����  

 

One often uses the short hand 
 

���� = ��
� 

 

so that 
 

��
� = ��

� + ��
���� [1]  

 

RESULTS 

 
The sectional curvature indicates to know the behavior of some 
of the functions and the solution of mathematics equations, and 
also it revealed the Euler – Lagrange equation which is 
considered one of the application of the non - positive sectional 
curvature. 
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