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Abstract

In this paper, exponential gamma distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have
been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.
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INTRODUCTION

Ogunwale O. D. et al. [1] introduced the exponential gamma
distribution. They derived appropriate expressions for its
statistical properties. The probability density function of
exponential gamma distribution is given by
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The joint density function or likelihood function of (1) is given
by
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The log likelihood function is given by
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Differentiating (3) with respect to θ and equating to zero, we
get the maximum likelihood estimator of θ which is given as
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Bayesian Method of Estimation

The Bayesian inference procedures have been developed
generally under squared error loss function
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The Bayes estimator under the above loss function, say, s


is
the posterior mean, i.e,
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Zellner [2], Basu and Ebrahimi [3] have recognized that the
inappropriateness of using symmetric loss function. Norstrom
[4] introduced precautionary loss function is given as
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The Bayes estimator under this loss function is denoted by P


and is obtained as  
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Calabria and Pulcini [5] points out that a useful asymmetric
loss function is the entropy loss

    1p
eL p log       

where ,





  and whose minimum occurs at . 

 Also,

the loss function  L  has been used in Dey et al. [6] and

Dey and Liu [7], in the original form having 1p . Thus

 L  can written be as

    1eL b log ;  b>0.        (9)

The Bayes estimator under entropy loss function is denoted by

E


and is obtained by solving the following equation
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Wasan [8] proposed the K-loss function which is given as
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Under K-loss function the Bayes estimator of θ is denoted by

K


and is obtained as
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. (12)

Al-Bayyati [9] introduced a new loss function which is given
as
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Under Al-Bayyati’s loss function the Bayes estimator of θ is

denoted by Al


and is obtained as
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Let us consider two prior distributions of θ to obtain the Bayes
estimators.

(i) Quasi-prior: For the situation where we have no prior
information about the parameter θ, we may use the quasi
density as given by
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whered = 0 leads to a diffuse prior and d = 1, a non-
informative prior.

(ii) Gamma prior: Generally, the gamma density is used as
prior distribution of the parameter θ given by
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3. Posterior density under  1g 

The posterior density of θ under  1g  , on using (2), is given

by
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(17)

Theorem 1.On using (17), we have
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Proof.By definition,
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From equation (18), for 1c  , we have
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From equation (18), for 2c  , we have
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From equation (18), for 1c   , we have
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From equation (18), for 1c c  , we have
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4. Bayes estimators under  1g 

From equation (6), on using (19), the Bayes estimator of θ
under squared error loss function is given by
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From equation (8), on using (20), the Bayes estimator of θ
under precautionary loss function is obtained as
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From equation (10), on using (21), the Bayes estimator of θ
under entropy loss function is given by
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From equation (12), on using (19) and (21), the Bayes
estimator of θ under K-loss function is given by
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From equation (14), on using (18) and (22), the Bayes
estimator of θ under Al-Bayyati’s loss function comes out to
be
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5. Posterior density under  2g 

Under  2g  , the posterior density of θ, using equation (2),
is obtained as
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(28)

Theorem 2.On using (28), we have
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Proof.By definition,
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From equation (29), for 1c  , we have
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From equation (29), for 2c  , we have
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From equation (29), for 1c   , we have
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From equation (29), for 1c c  , we have
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6. Bayes estimators under  2g 

From equation (6), on using (30), the Bayes estimator of θ
under squared error loss function is given by
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From equation (8), on using (31), the Bayes estimator of θ
under precautionary loss function is obtained as
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From equation (10), on using (32), the Bayes estimator of θ
under entropy loss function is given by
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From equation (12), on using (30) and (32), the Bayes
estimator of θ under K-loss function is given by
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From equation (14), on using (29) and (33), the Bayes
estimator of θ under Al-Bayyati’s loss function comes out to
be
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Conclusion

In this paper, we have obtained a number of estimators of
parameter of exponential gamma distribution. In equation (4)
we have obtained the maximum likelihood estimator of the
parameter. In equation (23), (24), (25), (26) and (27) we have
obtained the Bayes estimators under different loss functions
using quasi prior. In equation (34), (35), (36), (37) and (38) we
have obtained the Bayes estimators under different loss
functions using gamma prior. In the above equations, it is clear
that the Bayes estimators depend upon the parameters of the
prior distribution.
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