
International Journal of Science Academic Research 
Vol. 03, Issue 07, pp.4152-4156, July, 2022 
Available online at http://www.scienceijsar.com 
 

 
ISSN: 2582-6425 

Research Article 
 

MODELING FOR ORTHO-PLANAR FLEXURE BASED COMPLIANT MECHANISM 
 

*Dong-Chan Lee 
 

IAE, 175-28, Goan-ro 51 beon-gil, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 17180, Korea 
 

Received 12th May 2022; Accepted 15th June 2022; Published online 30th July 2022 
 

 

Abstract 
 

This paper presents the design considerations of ortho-planar flexure hinge that has the vertical motions of platform relative to the base boundary 
with no rotation. The design concept is its non-rotating vertical motion, eliminates the problem of rotation against adjoining surfaces and is less 
sensitive to variation in the state of assemblies. The design equations are presented to identify different configurations and the force-defection 
relationships. The objective of this work was to apply the mathematical method to design an ortho-planar flexure hinge while the design should 
have minimum mass and at the same time satisfy a set of constrained displacement. The mathematical and topological processes showthe layout 
design under small displacement conditions, the output displacement, maximum stress magnitude, and the maximum stress of linear elastic 
assumption. However, the mass fraction and the layout as the result of the optimization process may be different. As for larger displacement, the 
maximum stress of linear elastic material appeared some times higher than the maximum stress of the small displacement model. Thus, the 
design consideration of topology optimization scheme may be selected by the linear or nonlinear material and deformation models. 
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INTRODUCTION 

 
A flexure is a monolithic compliant element that connects two 
or more assumed rigid links, allowing for selectively chosen 
movements. Flexures are engineered to be compliant for 
specific relative rigid link movements, the mechanism Degrees 
of Freedom, while stiff in other mechanism degrees, the 
mechanism Degrees of Constraint. A flexure hinge consists of 
a flexible, slender region between two adjacent rigid parts that 
undergo relative limited rotation in a mechanism and is the 
important constituent of lumped compliant mechanisms. 
Through elastic deformation, flexures offer extreme position 
repeatability within a limited range of motion in their degrees 
of freedom, while constraining motion in the degrees of 
constraint. Topology optimization proves a prospective tool for 
the design of short-stroke flexures, providing maximum design 
freedom and allowing for application-specific requirements. 
Flexure hinges have several advantages over conventional 
rotational joints due to being monolithic with the rest of the 
mechanism.[1,2] They have no friction losses, no need for 
lubrication, and no backlash; they do have compactness. 
Therefore, flexure hinges are widely used in translation micro-
positioning stages, scanning tunneling microscopes, high-
precision cameras, robotic micro-displacement mechanisms, 
and especially in micro-electromechanical systems 
(MEMSs).[3–5] The primary design requirement of a short-
stroke flexure is the relative stiffness between the mechanism 
Degrees of Freedoms and Degrees of Constraints. Secondary 
considerations are range of motion, axis drift, deformation and 
stress, fatigue, volume and mass, as well as the sensitivity of 
those aspects to, e.g., manufacturing errors. The synthesis 
methods often used for rigid body mechanisms, cannot 
straightforwardly be applied to compliant mechanisms. There 
is always mechanical stress involved in any motion, and the 
behavior is dependent on the loading condition.  
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This implies that kinematics (motion) and kinetics (load case) 
must be treated simultaneously. As a result, the concept of 
mechanism DOFs fades in compliant mechanisms, because 
they behave differently for any loading conditions. Systematic 
flexure synthesis methods rely on kinematic approaches, such 
as rigid-body replacement techniques or the freedom and 
constraint topology method. As the most important 
components of compliant mechanisms, various cross section 
profiles of flexure hinges have been studied. The 
aforementioned design of flexure hinges is based on a given 
shape or a known topology. The performances of flexure 
hinges are mainly determined by the shape of cross section. 
Designers’ experiences have a large impact on the 
performances of hinges. A general empirical equation for 
evaluating the stress level is also developed based on the finite 
element method. The analytical model predictions are 
confirmed by FEA results and experimental measurement data 
within 5% uncertainty. Numerical descriptions demonstrate the 
versatility in flexure types and the extend ability of additional 
design requirements. 
 
Topology optimization of compliant mechanism 
 
Topology optimization is a computational design methodology 
which iteratively utilizes finite element analysis to generate the 
optimal distribution of material within a fixed design domain 
that minimizes a prescribed objective function and satisfies a 
series of constraint functions. Here, the solid isotropic material 
with penalization(SIMP) method allows each finite element to 
occupy a continuous density space between 0 and 1 in the 
design density of flexure hinges due to its high computational 
efficiency. The finite element method is used to discretize the 
topology optimization problem. In the standard displacement-
based linear FEA, the displacement field uin the design 
domain is approximated by nodal interpolation such that 
 

                                                                            (1) 
 



where is a matrix of global shape functions and is the 
corresponding element nodal displacement vector. Using 
geometric equations, the strain-displacement relationship is 
derived as 
 

                                                                                  (2) 
 
where is the element strain vector and is the standard B-
matrix constructed from the global shape functions. According 
to Hooke’s law, the element stress vector is written as follows: 
 

                                                               (3-1) 
 
When applied to structural problems, the SIMP method defines 
a heuristic relation between an element’s elastic modulusand 
its density, which forms the design variable. 
 

                                 (3-2) 

 
Where  is the density of element e, and ,  

and  produce void and solid element of moduli and 

, respectively. A small, non-zero  is employed to 

avoid singularities. Further,  is the penalty exponent, where 

for  the design approaches a binary solution 
 
The optimization problem is solved by iteratively evaluating 
the finite element equilibrium equation: 
 

                                                                               (4) 
 

where  is the element stiffness matrix and  

is the nodal force vector. As the hinge displacements in this 
study are typically small, a linear solver is used to produce a 
tractable solution. In hinges with large displacements, 
geometric non-linearities may reduce the accuracy of results. 
 
Generally, the work done by external forces is defined as mean 
compliance. Its mathematical formulation can be expressed as, 
 

 
 

Fig. 1. Discrete design domain of finite element 
 

                                  (5) 

 
where is the body force, and is the surface traction. and 

are point force and displacement of the i-th degree of 
freedom, respectively. 
 
In the discrete model of the SIMP approach, the design domain 
is discretized by N four-node square finite elements (see Fig. 
1(b)) and the material density in each element is a design 
variable. Each node has two degrees of freedom which are 
translations in the  and directions. From Fig. 1(a), it is noted 
that the material density distribution ranges from solid (black) 

 to void (white) in every element. In addition, a 
penalty factor penalizes intermediate (grey) elements with 

 driving the structure towards a white-and-black 
configuration. In this formulation, the material properties (such 
as elastic tensor, stiffness matrix, and element densities) are 
connected. A relation between element density and elastic 

tensor is expressed by , where is the 

elastic tensor of the solid material and is the penalty factor. 
 

 
Fig. 2. A sketch of the design domain and force loading condition 
 
The design domain of the flexure hinge is shown in Fig. 2, 
where is the design domain which is set to be a square, and 

is the rigid domain (design variables are set to be 1) which 
belongs to the non-design domain. The design domain is fixed 
at boundary and is symmetric with respect to the -axis. 

Loads and are acted at input port b. A 2D design space is 

used to enable a relatively large planar space to be solved, and 
because the resulting structures are expected to be primarily 
planar. These mechanism degrees define prescribed nodal 
displacements at the interfaces between rigid link and flexure 
(e.g. a unit displacement in y-direction between top and bottom 
interfaces for mechanism degree). The assumption that these 
interfaces are rigid is valid if the links can be considered much 
stiffer compared to the flexure. As such, the mechanism 
degrees correspond to the relative rigid body motions of the 
interfaces. Since the deformations of a flexure hinge are small, 
a generic hinge can be modeled and analyzed as a small-
deformation fixed-free Euler-Bernoulli beam subjected to axial 
and bending effects produced by forces and moments. In 
general, the compliance of point  is used to indicate the 
compliance of a flexure hinge, which can be calculated by the 
displacement of point  and the loads applied at this point. 
However, in the implementation of flexure hinge topology 
optimization, the forces  and  are applied at point  of the 

rigid link instead of at point .Thus, the forces and moment 

applied at point  are equivalent to the form of the forces and 
.The space is parametrized by an FEA mesh. Square 

elements of equal side-length are selected for their ability to 
efficiently span a square design space. For flexure hinges, 
when the stiffness of flexure hinges in the -direction is as 

large as possible and the stiffness in the -direction is as small 
as possible, the hinges are closer to the ideal joints. Therefore, 
we need to maximize the compliance in the -direction and 

minimize the compliance in the -direction. Since only point 
forces are considered in topology optimization, the 
compliances and can be calculated from Eq. (5) as 
follows: 
 

,                                                           (6) 
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where and are the external force vectors, and  

(produced by ) and  (produced by ) are the 

displacement vectors for the mechanism in its equilibrium 
position. The objective function of optimization problem can 
be stated as follows: 
 

                                                                 (7) 

 

where  and are the initial compliances in topology 

optimization. 
 

The optimization is performed using the method of moving 
asymptotes, a convex approximation method developed for 
efficiently solving structural optimization problems. A 
constraint function of the optimization problem for flexure 
hinges can be written as follows: 
 

                                                     (8) 

 

where and are the displacements of points a and b along 

y-direction due to the force , respectively.  is a given small 

positive constant. The finite element discrete form of the 
topology optimization problem for flexure hinges can be 
formulated as follows: 
 

                                       (9) 

 
 
subject to , 

, 

, 

, ,  

 
where denotes the allowed volume fraction and is the 
global stiffness matrix which can be written as 
 

                 (10) 

 
Where  is the element stiffness matrix for unit material 

stiffness, is the stiffness of the output flexure hinge (as 
shown in Fig. 2) in global level. The artificial flexure hinge 
modelis often used at the input and output ports to model the 
clearance between the workpiece and the mechanism and also 
simulate the reaction force from workpiece. Figure 3 shows the 
final topology results of flexure hinges with different . For 
clearly plotting the results of topology optimization, only part 
of the rigid domain is plotted. 
 

The term  can be determined from  with  

being the global stiffness matrix and  being the vector of 
external forces, by differentiation with regard to the design 
variable, 
 

                                                              (11) 

 

                                                      (12) 

where sums up the derivatives of the element stiffness 

matrices . 

Theoretical considerations for compliant mechanism 
 
Ortho-planar compliant flexure can have different 
configurations according to the number of flexible segments 
(Fig. 3). The minimum possible number of segments is two, in 
order to align the structure in parallel above the compliant 
flexure with the structure below the compliant flexure. The 
design of structure of the ortho-planar compliant flexure 
should be flexible enough to achieve displacement, and, at the 
same time, robust in order to avoid breaking. It is known [6,7] 
that four segments do not provide better stability of the 
structure compared to three legs. Constructing an ortho-planar 
compliant flexure from a higher number of flexible segments is 
possible, but with a keen interest to achieve a miniaturized 
sensing structure, we chose a three-segmented approach. 
 

 
(a) 
 

 
(b) 
 

 
(c) 

 

Fig. 3. Design space of ortho-planar flexure with different . (a) 

= 0.01, (b) = 0.03, and (c) = 0.06. 

 
Usually, the circle, ellipse, hyperbola, or other common shapes 
are selected as the profiles of flexure hinges, but they may not 
be the best topologies of flexure hinges. From Fig. 3, it can be 
seen that nearly the same topologies are obtained and the 
shapes of these topologies are rather different from the shapes 
of the conventional hinges. The profile of the flexure hinge is 
formed by three different segments (as shown in Fig. 4). Note 
that the middle segment is slightly different with different 
flexure hinge stiffness Ks, so we can obtain various flexure 
hinges with different performances by changing the thickness 
and width of the middle segment. Therefore, a new type of 
flexure hinge is designed based on topology optimization 
results. The theoretical analysis is formulated based on several 
simplifying assumptions that are summarized in the following: 
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• The flexure hinges comprise three portions: the left and 
right segments are polynomial curves and the middle 
segment is of constant cross section. 

• The flexure hinges are symmetric with respect to the 
longitudinal axis and asymmetric with respect to the middle 
transverse axis. 

• The flexure hinges are designed to be applied in two 
dimensional compliant mechanisms. They are formulated 
to characterize in-plane motions and only three degrees of 
freedom are considered: two translations in the x- and y-
directions, and one rotation around the z-axis. 

• Since all deformations of flexure hinges are small, the 
hinges are modeled and analyzed as small-displacement 
fixed-free Euler-Bernoulli beams subjected to bending and 
axial effects produced by forces, moments, and axial loads. 
Shearing and torsional effects are not taken into account. 

• The boundary conditions for flexure hinges are fixed-free, 
the left end of flexure hinges is fixed, and the other end is 
free. 

 

 
 

Fig. 4. Detailed geometric information of curved-beam-based 
Ortho-planar flexure hinge 

 
Compliance is one of the main parameters for flexure hinge 
design. The compliance equations of flexure hinges are derived 
by applying the basic theory of mechanics of materials. For a 
combination of loads, the principle of superposition can be 
used to calculate the total deformation since the deformations 
in all directions are small enough. Based on the previous 
assumptions, the hinge can be modeled as a cantilever beam. 
Schematic representation of a flexure hinge with loading is 
shown in Fig. 5. We can evaluate the parameters of the ortho-
planar flexure hinge elements to show how they influence the 
spatial deflection of the overall structure. The deflection of a 
single flexible leg can be expressed again from the rectangular 
beam equation. Point 1 is the free end with loads, point 2 is the 
center of rotation, and point 3 is the fixed end; they correspond 
to positions 1, 2, and 3 in Fig. 5, respectively. Torsional 
moment shown in FIG. 6-(a), the eccentric nature of the leg 
design turns the intermediate platform into a moment arm 
which creates torsion along the leg segments. These stresses 
may be more prevalent in the pure bending type than in other 
leg designs. Torsion may also be present in the intermediate 
platforms. Torsional behavior in the leg segments will increase 
as the moment arm(e shown in Fig. 6-(a)) increases. Torsion in 
the intermediate platform will increase with the orthogonal 
load. Shear stress will be present near the transition geometry 
due to a tearing phenomena created by orthogonal loads. See 
Fig. 6-(b). This type of stress will produce a stress 
concentration found at the transition radii. This shear area in 
the intermediate platform has the highest stress while subject 

to only orthogonal loads. An ortho-planar flexure hinge is a 
kind of compliant mechanisms that utilizes the out-of-plane 
deformation of its flexible limbs. The ortho-planar flexure 
hinge has many advantages, including capability of being 
fabricated from a single piece of material that reduces 
manufacturing costs with its compact form, enabling it to be 
used in a highly confined space. 
 

 
(a) 

 
 

 
(b) 

 
Fig. 5. Schematic representation of a flexure hinge with loads. (a) 
Bending and axial loads ortho-planar compliant mechanism, (b) 

Loading condition. 

                  
(a)                                              (b) 

 
Fig. 6 (a) Torsional stresses in leg segments and intermediate 

platform from eccentricity of pure bending leg design (b) shear 
stresses in intermediate platform. 

 
By defining the load vector as, 
 

                                                     (13) 
 

and the corresponding displacement vector as 
 

                                                             (14) 
 

the following relationship of displacement-load at the free end 
is obtained: 
 

                                                                                 (15) 
 

where is the compliance matrix of the flexure hinge, which 
can be expressed as follows: 

 

                                                     (16) 
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where , according to the reciprocity principle. Each 

element in the compliance matrix is called a compliance factor. 
Based on Castigliano’s second theorem, the displacement load 
relationship can be formulated as follows: 
 

                                                                      (17) 

 
Since the flexure hinge is subjected to bending and axial load, 
the elastic strain energy comprises bending and axial terms 
and can be expressed as, 
 

      (18) 

 
where ,  and  are the area moment of inertia, 
polar moment of inertia and area with variable shape functions 
of each flexure bridge.  is the length of the flexure hinges. 
Each flexible flexure hinge element is made up of a rectangular 
beam with cross-sectional parameters—width  and height h. 
the path of x-direction changes along the flexure bridges. 
 
Conclusion 
 
Ortho-planar mechanisms are comprised of both compliant and 
rigid-body mechanisms. Ortho-planar mechanisms are defined 
as mechanisms in which all the links can be located 
simultaneously in a single plane. Compliant ortho-planar 
flexure hinges have been used to provide force-displacement 
behavior in compact spaces. Through the design consideration 
of mathematical and topological approaches, compliant ortho-
planar flexure hinges can potentially eliminate many of the 
problems associated with traditional ortho-planar flexure 
hinges. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some of these advantages include less rotation of the platform, 
no required clearance, increased displacement, and improved 
fatigue life. This paper has been to investigate the behavior of 
compliant ortho-planar flexure hinges subjected to complex 
loads, specifically their behavior for lateral stability, the effects 
of stress stiffening, and the effects of inertial loading, and may 
show the qualitative look at the design space and imposed 
limitations, parameter influence (flexure hinge geometry), 
loads, stresses and the applicability of current design tools. 
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