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Abstract 
 

Oxidative phosphorylation (OXPHOS) is an enzyme metabolic pathway that oxidizes nutrients to release chemical energy stored in the form of 
ATP (adenosine triphosphate). This process consists of five protein complexes I-V and takes place in the mitochondria. Several previous studies 
have stated that failure in this role has an effect on reducing the development of neurological diseases. The previous studies showed increasing 
the synaptic activity in the nervous system will increase mitochondrial division also and the failure of this process induced apoptosis and death of 
the nervous system. Failure of the OXPHOS process is associated with mutations in nuclear DNA or in mitochondrial DNA (mtDNA). Factors 
causing mtDNA damage, namely the absence of his tone proteins that bind mtDNA which should be able to protect mtDNA against free radicals, 
in mtDNA there is no DNA repair mechanism and mtDNA is located in the inner mitochondrial membrane adjacent to the site of ROS 
production (highly toxic). 
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INTRODUCTION 

 
The forms of diseases of the nervous system are very varied 
and require complex treatment, and most of these diseases are 
incomplete or even the causes and mechanisms and effective 
therapy are not understood 1,2.It happened because there are so 
many causes for disorders of the nervous system (multiple 
causes) that prevention or therapy becomes difficult, even 
nearly impossible3. The previous studies tried to find out more 
about disorders of the nervous system, it would be better to 
focus on the cellular level because the cellular level is vital for 
the development, cell metabolism and bioenergy of the 
nervous system4,5. Cell metabolism has a great influence on the 
development of cells, such as nerve cells 6,7. Disturbances in 
cell metabolism (a lack of ATP) will have implications for the 
work of a cell itself and mitochondria, as a source of energy 
production, play an important role in supplying energy to 
metabolizing cells, resulting in damage or failure of 
mitochondria in organizing energy production (mtDNA and 
nDNA), in ha, this dysfunction in mitochondrial oxidative 
phosphorylation (OXPHOS) affects the metabolism of these 
cells, including in the nervous system 8,9. 
 
The importance of mitochondria in neurons 
 
Cell regulation of the number and size of mitochondria is 
controlled by division and fusion mechanisms.  
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These process are especially important in neurons that aim to 
produce large amounts of energy10. Neurons are made up of 
thousands of mitochondria, which carry out their work like a 
formation of wires. Increased synaptic activity will increase 
mitochondrial division and failure of function in this process 
will induce apoptosis and death of the neuron system. 
However, the effects of this fission and fusion will lead to the 
production of reactive oxygen species (ROS), which will affect 
the development of neurodegenerative diseases11. Energy 
production for the body, cell mitochondria must produce a 
number of ATP through oxidative carbohydrates, fatty acids 
and amino acids, which is known as the process of oxidative 
phosphorylation 12,13. Oxidative Phosphorylation (OXPHOS) 
occurs via the electron transport chain (ETC), which takes 
place in the inner mitochondrial membrane14. ETC is 
composed of complex I (NADH ubiquinone oxidoreductase), 
II (ubiquinone succinate oxidoreductase), III (ubiquinone 
cytochrome c oxidoreductase) and IV (cytochrome c oxidase); 
ATP is further produced by F1F0-ATP synthase, also known 
as complex V, which is a component of the OXHOS system 
but not part of the ETC15,16. It is not only do muscle cells have 
lots of mitochondria and ATP, but also the brain also needs a 
lot of ATP. Interestingly, neurons are completely dependent on 
the OXPHOS system to produce ATP because neurons cannot 
carry out the process of glycolysis to produce ATP even when 
there is limited amount of OXPHOS 17,18. Failure of the 
OXPHOS process is associated with mutations in nuclear 
DNA or in mitochondrial DNA or can even occur as a result of 
damage to both, there is a complex relationship between 
mutations of the two components, such as mutations in nDNA 
may result in mtDNA damage and dysfunction, and vice versa 



mtDNA mutations can result of variations in nDNA 
expression1,19. The diagnosis of mitochondrial disease is 
associated with mutations in mtDNA and nDNA. Both 
mutations, nDNA and mtDNA, occur due to an increase in 
reactive oxidative species, or the production of toxic ROS20,21. 
Mitochondrial DNA is responsible for coding for proteins that 
affect OXPHOS so that mtDNA damage can cause interference 
with respiration and ROS production, and then lead to second 
mtDNA mutations, which will further cause damage to DNA 
and proteins that affect OXPHOS dysfunction22,23. Factors 
causing mtDNA damage, namely the absence of histone 
proteins that bind mtDNA which should be able to protect 
mtDNA against free radicals, in mtDNA there is no DNA 
repair mechanism and mtDNA is located in the inner 
mitochondrial membrane adjacent to the site of ROS 
production (highly toxic). However, mtDNA is also protected 
by a nucleid envelope structure consisting of mitochondrial 
proteins mtSSB and TFAM which protect against oxidative 
damage 12,24. 
 
Diseases of the nervous system: Mutations of mtDNA and 
DNA 
 
Diseases of the nervous system that occur at a young age result 
from OXPHOS dysfunction directly in mtDNA and nDNA 
mutations. The diseases are: 
 
MELAS, is a maternally inherited disease from the mother's 
mitochondria and is characteristic of stroke. Manifestations of 
MELAS include vision imbalance, motor disabilities and 
dementia. The majority of MELAS sufferers show an A to G 
mtDNA mutation in the 3234 nucleotide of the MT-TL1 gene 
which encodes the transfer RNA for the amino acid leucine 
25,26. 
 
MERRF, is a mitochondrial disease with a variable clinical 
phenotype. This disease arises due to mutations at nucleotide 
8344 in the MT-TK gene which codes for tRNA in mtDNA. 
Patients with MERRF usually exhibit myoclonic epilepsy, 
ataxia, and myopathy 8,27. 
 
NARP, occurs due to point mutations at m.8399 T > C and 
m.8993 T > G in the mtDNA gene MT-ATPase6. This point 
mutation leads to breakdown of OXPHOS during ATP 
synthesis and increased ROS production 22,28. 
 
Friedreich’s Ataxia (FRDA), is an autosomal recessive disease 
associated with mitochondrial dysfunction as a result of a 
deficiency in the iron-sulfur cluster resulting from mutations in 
the nDNA coding for frataxin. In FRDA patients, homozygous 
expansion of the FRDA gene is seen with the initial intron in 
the form of a GAA repeat, which is responsible for coding 
frataxin, a mitochondrial protein for heme synthesis, formation 
of iron-sulfur clusters, and iron detoxification. Patients with 
FRDA are diagnosed with the phenotype of ataxia, spasticity 
and axonal sensory neuropathy, including early degeneration 
of sensory neuron 29,30. 
 
Leigh Syndrome, This nervous system disease is associated 
with nDNA mutations in the structure and non-structure of the 
OXPHOS gene, where mutation points occur located in the 
MT-ATPase6 gene, which converts thymine to guanine at 
nucleotide 8993, substitution of leucine to arginine at the 
amino acid position 156 in ATP 6 protein. Interestingly, LS 

patients with the T8993G mutation show different symptoms 
from the T8993C mutation 31,32,33. 
 

LHON, occurs as a result of more than 20 different mtDNA 
mutations, but most usually result from a 3-part mutation 
encoding the protein complex 1: m.3460 G >A, m.11778 G>A, 
or m.14484 T>C 34,35. In addition to diseases caused by 
mutations in mtDNA and nDNA, OXPHOS damage and 
dysfunction can also occur due to the production of ROS 
which are highly toxic causing several diseases, such as 
Parkinson's Disease (PD) with decreased dopamine neurons in 
the substantia nigra pars compactica (SNpc) and development 
of proteinases including what are known as Lewy bodies on 
dopamine neurons (DA)16,36. Decreased Purkinje cells have 
also been reported in patients with neurodegeneration. 
Symptoms in people with PD can include tremor, rigidity, 
bradykinesia, and postural instability37. So far the cause of PD 
is still not known with certainty, it can occur due to genetic 
mutations in the Parkin and PINK1 proteins, or both which 
result in mitochondrial damage through the process of 
autophagy, but there are also PD that are not related to 
mutations38,39. Furthermore, the discovery of mtDNA deletions 
in the substantia nigra in PD patients is thought to contribute to 
neuronal death in this area. 40,41. 
 

Alzheimer’s Disease, occurs as a result of hippocampal 
neurons showing increased levels of mtDNA and cytochrome c 
oxidase in the cytosol, which play a role in the decline of 
hippocampal neurons42. There is also a decrease in membrane 
potential and a reduction in ATP 43,44. 
 

Huntington’s Disease, results from multiple CAG replications 
in the Huntington gene. This results in the onset of decreased 
motor function and even cognitive imbalance. Preliminary 
studies demonstrated that the peroxisome proliferator-activated 
gamma coactivator-1α (PGC-1α) receptor plays an important 
role in the biogenesis of controlling neuronal mitochondrial 
numbers45,46. Researchers also demonstrated that 
overexpression of PGC-1α induces mitochondrial loss47. 
 

Amyotrophic lateral sclerosis Occurs due to mutation of the 
superoxide dismutase 1 (SOD1) gene which is responsible for 
the conversion of superoxide to oxygen and hydrogen 
peroxide48,49,50. 
 
Conclusion 
 
The development of research in the cellular-mocular field 
shows that not only mutations in nuclear DNA play a role in 
the emergence of genetic diseases, mutations in mtDNA that 
regulate and produce ATP also contribute to genetic diseases. 
world of health to develop therapies related to mitochondrial 
diseases. 
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