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Abstract 
 

Nanoparticles are discrete entities identifiable by their sizes, which typically fall within the range of 1 to 100 nanometers, with at least one of 
their dimensions falling within this size range.  These particles can be classified into three major categories, namely organic, inorganic, and 
carbon-based particles, displaying superior properties when compared to their larger materials. Due to their small size, nanoparticles exhibit 
enhanced characteristics, such as rapid chemical reactivity, robust mechanical strength, drastically increased surface area, remarkable sensitivity, 
and improved stability. The synthesis of nanoparticles has undergone remarkable advancements over time, employing diverse physical, chemical, 
and mechanical processes. These significant strides in methodologies have enabled precise control of nanoparticles, catering to both research and 
industrial needs, thereby expanding their potential applications. This review paper offers a comprehensive examination of nanoparticles, 
covering a wide array of nanoparticle types, their unique attributes, recent techniques for their synthesis, and their applications within the field of 
biomedical engineering. 
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INTRODUCTION 

 
Nanotechnology has garnered significant attention in recent 
decades, and nanoparticles have merged as its central focus. 
These particles, ranging in size from 1 and 100 nanometers, 
comprise various materials including carbon, metals, metal 
oxides, and organic matters [1]. Furthermore, alternative terms 
can be employed to describe more substantial particles with a 
diameter exceeding 100 nm. For instance, materials like 
nanowires, nanotubes, nanorods, nanofibers, and nanofilms are 
considered as nanomaterials, as they exhibit dimensions less 
than 100 nm, albeit having one dimension that extends beyond 
the customary nanoscale measurement[2]. Nanoparticles can 
exist in different dimensions, shapes, and sizes, running from 
zero-dimensional structures to three-dimensional forms. Their 
diverse shapes encompass spherical, polygonal, tubular, flat 
and various other structures. Furthermore, nanoparticles may 
have uniform or irregular surfaces with surface variations, and 
they can be either crystalline or amorphous, and can be found 
either as loosely dispersed entities or in agglomerated 
arrangements. They are commonly synthesized using either the 
top-down or bottom-up approach. In recent times, various 
methods for synthesizing nanomaterials have gained 
significance, including physical/chemical deposition, 
sputtering, pyrolysis, biological synthesis, and mores. These 
methods are often combined with one another to enhance the 
efficiency of nanomaterial synthesis [3]. At the nanoscale, 
nanoparticles exhibit unique physical, chemical, and biological 
properties distinct from their larger counterparts. These 
distinctive properties are attributed to the significantly 
increased surface area-to-volumeratio, superior mechanical 
strength, enhanced chemical reactivity, heightened sensitivity 
and greater stability [4]. As a result of these exceptional 
properties, nanoparticles have found applications across 
various fields including chemical sensors [1], biosensors [5], as 
well as medical treatments [6].  
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Current research efforts are dedicated to developing and 
refining synthesis methods to improve nanoparticle properties 
while reducing production costs. Modified approaches aim to 
produce nanoparticles with tailored properties, thereby 
elevating their optical, mechanical, physical, and chemical 
characteristics. Advanced instrumentation has played a crucial 
role in improving nanoparticle characterization and enabling 
their diverse applications. Nanoparticles have found their way 
into numerous objects, from everyday cosmetics and 
electronics to critical and innovative industries like renewable 
energy and disease treatment. This review delves into the 
distinctive attributions of nanoparticles that find applications in 
various facets of biomedical engineering. It not only highlights 
the recent trends in leveraging nanoparticles for biomedical 
application but also places significant emphasis on the 
methodologies employed in their kinds and synthesis. The 
article discusses the evolving role of nanoparticles in 
advancing biomedical and healthcare domains, encompassing, 
drug delivery, bioimaging, tissue engineering, genome editing, 
and biosensors. Throughout the review, critical factors 
pertaining to nanoparticles, such as size, shape, concentration, 
and surface modification are discussed in relation to their 
relevance in live cell bioimaging. Additionally, it provides 
insights into diverse targeted drug delivery systems aimed at 
addressing chronic diseases. 
 
Classification of Nanomaterials 
 
Nanomaterials are typically categorized into four groups based 
on their dimensionality [7]. First, there are 0D nanoparticles, 
which consist of a single point in space with fixed dimensions 
for length, height, and width. Nanospheres and clusters such as 
quantum dots, fullerenes and gold nanoparticles are examples 
of 0D nanomaterials. Second, 1D nanomaterials including 
nanotubes, nanowires, and nanorods possess only one 
dimension (length). Third, 2D nanomaterials such as nanofilm 
and nanoplates have dimensions in length and width. A typical 
example of a 2D nanostructure is the graphene nanosheet, 
which has a nanoscale thickness. Theoretically, a single-layer 
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Top-down method 
 
Top-down or destructive method involves reducing a bulk 
materials into particles at the nanometer scale. Among the 
most commonly employed techniques for synthesizing 
nanoparticles are mechanical milling, laser ablation, thermal 
decomposition, sputtering, and nanolithography. Among them, 
mechanical milling stands out the most widely employed and 
simple method for manipulating diverse nanoparticles. In 
mechanical milling, nanoparticles are milled and subsequently 
subjected to annealing, wherein different elements are milled 
within an inert atmosphere [15]. During the process, plastic 
deformation influences particle shape, fracture, resulting in a 
reduction in particle size, and cold-welding increases the 
particle size.  
 

Laser Ablation Synthesis in Solution (LASiS) is a frequently 
employed technique for producing nanoparticles in various 
solvent medium. This process involves irradiating a metal 
submerged in a liquid solution using a laser beam, resulting in 
the condensation of a plasma plume that yields nanoparticles 
[16]. It represents an environmentally friendly top-down 
approach, offering an alternative to the traditional chemical 
reduction of metals for synthesizing metal-based nanoparticles. 
The primary advantage of LASiS is the ability to produce 
stable nanoparticles in both organic and aqueous solvents 
without the need for stabilizing agents or chemicals. Metal 
nanoparticles are also synthesized by thermal decomposition, 
an endothermic chemical decomposition induced by heat. It 
involves the breaking of chemical bonds within a compound 
[17]. The temperature at which a substance undergoes this 
chemical decomposition is referred to its decomposition 
temperature, and the nanoparticles are manipulated through the 
decomposition of metals at precisely controlled temperatures, 
leading to a chemical reaction that results in the formation of 
secondary products. Sputtering is another destructive physical 
synthesis method, which involves the application of 
nanoparticles onto a surface through the expulsion of particles 
from the surface as a result of collisions with ions [18]. 
Typically, sputtering results in the deposition of a thin film of 
target materials, which is often followed by an additional 
annealing process to form nanoparticles. Therefore, the 
characteristics of the nanoparticles, such as their shape and 
size, are influenced by factors including the thickness of the 
film deposition, annealing temperature and duration, and 
substrate type [19]. Due to the recent advancements in 
nanotechnology, nanolithography technique has been also 
developed to create structures at the nanoscale, specifically 
involving at least one dimension within the range of 1 to 100 
nm. Various nanolithographic techniques include 
photolithography, electron-beam lithography, laser interference 
lithography, multiphoton lithography, nanoimprinting, and 
scanning probe lithography [20]. In general, lithography is the 
process of transferring a predetermined shape or pattern onto a 
photosensitive material, selectively removing a certain area of 
the material to achieve the desired structure. The primary 
advantage of nanolithography is its ability to produce an 
individual nanoparticle as well as their clusters, all with 
precisely tailored shapes and sizes. However, such a state-of-
art nanotechnology demands sophisticated equipment and is 
associated with significant costs [21]. 
 
Bottom-up method 
 
Bottom-up approach involves the construction of material 
starting from atom, progressing to clusters, and ultimately 

forming desired particles in nanoscale. The sol-gel method is 
widely favored among bottom-up approaches due to its 
simplicity and the broad range of nanoparticles that can be 
produced through this technique. The sol is a colloidal solution 
consisting of solid particles suspended within a liquid, while a 
gel involves a solid macromolecule immersed in a solvent. 
This wet-chemical process utilizes a chemical solution as a 
precursor to create an integrated system of distinct particles. 
Typically, metal oxides and chlorides serve as the primary 
precursors in the sol-gel process [22]. The precursor is 
subsequently dispersed in a liquid, achieved through simple 
processes such stirring or sonication, resulting in a system 
comprising both liquid and solid phases. To recover the 
resultant nanoparticles, a phase separation is performed, 
employing various techniques including centrifugation 
sedimentation, and filtration, followed by the removal of 
moisture through drying [23]. Nanoparticles can be 
synthesized using a spinning disc reactor, which comprises a 
chamber or reactor housing a rotating disc, allowing for control 
of physical parameters such as temperature. In this spinning 
method, to prevent any unwanted chemical reactions, oxygen 
is generally eliminated in the reactor by filling it with nitrogen 
or other inert gases [12]. The disc’s rotation speed varies while 
the liquid consisting precursor and water is pumped into the 
reactor. The spinning action causes the atoms or molecules to 
merge and precipitate, after which they are collected and dried 
[24]. The properties of the nanoparticles produced via SDR are 
influenced by various operating factors, including the liquid 
flow rate, location of feed, rotation speed, liquid to precursor 
ratio, disc surface morphology, and more.  
 
Unlike the sol-gel and spinning methods, chemical vapor 
deposition (CVD) is a dry process in which a thin layer of 
gaseous reactants is deposited onto a surface. This deposition 
process also takes place in a reaction chamber where gas 
molecules are combined. When a heated substrate comes into 
contact with the mixed gases, a chemical reaction occurs, 
resulting in the formation of a nanometer-thin film product on 
the substrate’s surface, which can be harvested and utilized 
[25]. The temperature of the substrate plays a crucial role in 
CVD. CVD offers several advantages including the production 
of highly pure, uniform, durable and robust nanoparticles. 
However, it also has drawbacks such as the need for 
specialized equipment and the generation of highly toxic 
gaseous by-products [26]. For industrial purposes, pyrolysis 
stands out as the predominant method employed for the large-
scale mass production of nanoparticle. This process entails the 
combustion of a precursor using a flame, where the precursor, 
which can be in liquid or vapor form, is introduced into a high-
pressure furnace through a small aperture, igniting upon entry 
[27]. The resulting by-product gases are subsequently air 
classified to harvest the nanoparticles. Sometimes, laser 
or plasma is employed instead of flame to generate the high 
temperatures required for efficient evaporation [28]. Pyrolysis 
offers numerous advantages, including its simplicity, 
efficiency, cost-effectiveness, and continuous operation, 
yielding a high output.  
 
On the other hand, biosynthesis represents an environmentally 
friendly and sustainable approach for nanoparticle synthesis, 
producing nontoxic and biodegradable nanoparticles [29]. It 
utilizes biological agents such as bacteria, fungi, plant extracts, 
and more, in conjunction with precursors, to synthesize 
nanoparticles. This innovative method replaces convention 
chemicals for bioreduction and capping purposes and produces 
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magnetic resonance. They offer favorable properties, including 
adjustable size, the capacity to produce ROS, ability to transfer 
energy, and light absorption characteristics. Furthermore, it is 
imperative to conduct a thorough examination of their long-
term toxicity and ability to remain stably dispersed. 
Fluorescent nanoparticles offers a versatile platform for 
tailoring their specificity, light-emission (particularly in the 
NIR-IR range), and biocompatibility with target tissues 
through alterations in their size, shape, and surface 
characteristics [40]. There are several key factors to be 
considered in the cellular uptake of nanoparticles employed in 
bioimaging [41]. For example, smaller nanoparticles exhibit 
superior cellular absorption compared to their larger 
counterparts with similar surface properties [42]. Also, 
nanoparticles with positive charge are preferred for cellular 
uptake, given the negatively charged nature of cell membrane 
[43]. Cell-specific targeting can be accomplished by attaching 
ligands to nanoparticles and protein or oligodexynucleotide 
conjugation can facilitate rapid absorption. These factors 
collectively contribute to the intricate dynamics of 
nanoparticle-cell interactions, influencing their effectiveness in 
various bioimaging applications. For instance, fluorescent 
metal quantum dots, such as those made from materials 
including Au, InP, InAs, ZnSe, CdTe, or CdS, and ranging in 
size from 1 to 10 nm, exhibit broad absorbance bands and 
narrow emission bands, making them suitable candidates for 
biological imaging within the near-infrared spectrum [44]. 
Such inorganic nanoparticles are widely employed in 
bioimaging due to their vivid coloration, diverse shapes and 
sizes, and high-intensity surface photoluminescence. They 
enable non-invasive disease detection and the tracking of 
disease progression or response to treatments in both human 
and animal subjects [45]. Metal oxide nanoparticles (e.g., 
Fe3O4 and WO3) [46], lanthanide-doped nanoparticles [47], 
and ceramic nanomaterials like mesoporous TiO2 and SiO2 
nanoparticles [48] have also been investigated for their 
potential in bioimaging and therapy. 
 
Fluorescent carbon nanoparticles present a compelling option 
for bioimaging applications due to several advantageous 
characteristics, including their abundant source, simple 
synthesis, cost-effectiveness, and non-toxic nature [49]. 
Notably, conventional fluorescent quantum dots often contain 
heavy metals like cadmium, which can pose hazards to 
biological systems. In contrast, carbon-based fluorescent 
nanoparticles, such as carbon quantum dots and fullerenes, 
merge as promising substitutes and surpass conventional 
organic fluorophores based on their resistance to photo-
bleaching and ease of surface modification [50]. Furthermore, 
their enhanced aqueous solubility, chemical stability, and 
fluorescence performance make them well-suited for 
biomedical purposes, particularly in vitro and in vivo 
bioimaging. It is crucial to functionalize the surface 
characteristics of nanoparticles in their utilization for 
bioimaging applications. Nevertheless, the task of identifying 
then a noparticles best suited for a particular bio imaging 
purpose is complex, requiring the evaluation of various factors 
including sensor size, brightness, photo stability, and 
biological safety. Once the optimal material is identified for a 
specific bioimaging application, all experiments must be fine-
tuned to match the chosen material. To address these 
challenges effectively, a better understanding of the 
repercussions of nanoparticles on nature is essential. This 
knowledge will provide insights into their imaging capabilities 
and interaction with living cells. Consequently, there is a 

pressing need for further research endeavors to advance the 
utilization of nanoparticles in bioimaging applications. 
 
Genome editing 
 
The emergence of technologies like zinc finger nuclease 
(ZFN), meganuclease, transcription activator-like effector 
nuclease (TALEN), and clustered regularly interspaced short 
palindromic repeats (CRISPR) has significantly simplified 
genome engineering, opening up wide-ranging applications in 
biomedical engineering [51]. The latest advancements in 
genome editing hold the promise of linking human genes to 
many rare diseases without effective treatments. Nevertheless, 
efficient and safe delivery methods remain a critical 
requirement to specifically aim and penetrate the desired cells 
while keeping toxicity to a minimum [52]. The delivery of 
genome-modifying materials poses challenges due to their 
multifaceted nature, containing sensitive cargo, and the 
necessity to surmount various extra- and intra- cellular barriers 
to access the target genome. Both lipid- and polymer-based 
nanoparticles have been successful in delivering a spectrum of 
nucleic acids, and they are indifferent phases of clinical 
advancement [53,54]. For instance, patisiranis a medication for 
the treatment of amyloidosis using siRNA in lipid 
nanoparticles [55]. 
 
The majority of genome-editing systems involving 
nanoparticles are created by combining nucleic acids with 
cationic materials. These complexes are then introduced into 
cells through mechanisms such as receptor-mediated 
endocytosis and phagocytosis [56]. Cationic materials serve a 
dual purpose: they facilitate the complexation with DNA or 
RNA and provide nanoparticles with responsive characteristics 
that helpin escaping endosomes. Lipids and polymer slike 
polyethylene imine (PEI), poly(amido amine) (PAA), 
polylysine (PLL), and poly(β-amino esters) show promise for 
delivering genome-editing systems[57,58]. Since these systems 
are sensitive to the intracellular conditions, efficient endocytic 
uptake can be ensured through optimization of both passive 
and active targeting components. 
 
Cystic fibrosis arises from genetic mutations affecting the gene 
responsible for encoding the cystic fibrosis transmembrane 
conductance regulator (CFTR) protein. Despite being a life-
threatening condition with no current cure, cystic fibrosis is 
considered a monogenic disorder, making it suitable for 
potential gene therapy interventions. Although it has been 
demonstrated that the CFTR gene is successfully treated in 
vitro, significant challenges related to gene expression and 
delivery have hindered progress when attempting gene therapy 
for cystic fibrosis in vivo [59]. As cystic fibrosis primarily 
affects cells responsible for producing mucus, they can 
produce abnormally thick mucus, which is the main symptom 
and a significant hurdle for effective drug delivery. To address 
this challenge, nanoparticles with enhanced muco-penetrating 
properties have been developed for use in delivering treatments 
to the lungs of individuals with cystic fibrosis, as well as for 
oral delivery. Nanoparticles that are smaller in size than the 
pores in the mucus meshwork and inert hydrophilic coatings 
demonstrate improved penetration [60,61]. While the 
utilization of nanoparticles for fetal delivery remains relatively 
limited, initial successes have been achieved in the  delivery of 
peptide nucleic acids using nanoparticles in utero [62]. These 
achievements have yielded a level of gene editing that is 
substantial enough to mitigate the disease to manageable 
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levels. Several companies are actively engaged in the 
development of gene therapeutics. For instance, Intellia 
Therapeutics is currently at the forefront of using lipid 
nanoparticles to address various liver diseases such as 
amyloidosis and hepatitis B virus infection. By meticulously 
designing nanoparticles with precision gene editing holds the 
promise of not only curing genetic diseases but also 
significantly improving the lives of patient. 
 
Biological sensors 
 
Biological sensors (biosensors) typically consist of organic and 
electronic components to generate and measure discernible 
signals from biological features[63]. These electronic elements 
are adept at detecting the physiological variations triggered by 
surrounding conditions of the sensor [64]. Specifically, 
biosensors comprise five fundamental elements: the analyte, 
receptor, transducer, electronic component and display. The 
term ‘analyte’denotes a substance that is being investigated 
forits presence and quantity are requires detection [65]. It is 
recognized and identified by an organic molecule called the 
receptor. The transducer is a specialized device with the role of 
converting the physiological changes resulting from the 
interaction between the analyte and receptor into a measurable 
optical or electrical signal [66]. The electronic component 
plays the pivotal role of receiving and quantifying the 
transduced signal. Finally, the displaying component present 
the response output in a comprehensible manner for the user’s 
understanding [67]. 
 
Efficient signal collection poses a primary challenge in the 
development of biosensors, and the process is known as 
transduction. To address this challenge, measurable 
physiological variations are translated into various forms of 
signals, including optical, electrochemical, magnetic, or 
gravimetric signals through the use of a transducer. Engineered 
nanoparticles offer several advantages, such as enhanced 
electrical conductivity, signal amplification capabilities and 
biocompatibility. These nanoparticles have the potential to 
capture significant quantities of specific binding units and 
serve conductive mediums, making them promising candidates 
for enhancing the detection sensitivity of biosensors. For 
instance, carbon-based nanoparticles can be utilized for 
extensively improved sensing performance and lower detection 
limits. The exceptional intrinsic characteristics of nanoparticles 
can significantly enhance the effectiveness of biosensors 
especially when developing for monitoring biomolecules [68]. 
For instance, the detection of biomarkers using advanced 
biosensors is a promising diagnostic application. Magnetic 
nanoparticles were employed to facilitate amperometric 
biosensing for prostate cancer biomarkers [69]. 
 
Tissue engineering 
 
Tissue engineering aims to build constructs made of biological 
elements, combined with biomaterials, in order to replicate the 
attributes of natural organs or tissues. They have the potential 
to replace traditional organ and tissue transplantation 
procedures, thereby reducing the associated cost burden [70]. 
Advances in nanotechnology and fabrication techniques 
rapidly expanded the possibilities for incorporating various 
nanomaterials into tissue engineering fields, including skin, 
neural, and bone engineering [71]. Their role is pivotal in 
finely adjusting scaffold properties, mainly increasing their 
mechanical durability and biocompatibility [72]. 

In the field of dental tissue engineering, there is a pressing 
need for innovative approach to effective address periodontal 
disease, particularly considering the tissue decay with loosing 
healing ability, and nanoparticles hold significant relevance in 
dental tissue engineering for several reasons [73]. They can be 
employed as coating and filling materials to enhance the 
mechanical robustness of dental tissues, antimicrobial agents 
effectively preventing oral infections, and ingredients in the 
development of innovative personal care products and 
toothpaste formulations [73]. For instance, Xi et al. conducted 
research involving the creation of multifunctional nano-
vesicles by co-assembling poly(ethylene oxide)-blockpoly (ε-
caprolactone) and poly(ε-caprolactone)-block-poly(lysine-stat-
phenylalanine). These vesicles were loaded with an antibiotic, 
ciprofloxacin hydrochloride, to demonstrate their ability to 
eliminate biofilms formed by Staphylococcus aureus and 
Escherichia coli [74]. Additionally, recent developments have 
introduced nanoparticles for designing nanostructured scaffold 
architectures to address significant skin wounds effectively. In 
the realm of skin tissue engineering, nanoparticles also find 
application as carriers for therapeutic molecules [75]. For 
example, Randeria et al. utilized Au nanoparticles that were 
functionalized with RNAs targeting ganglioside-mono sialic 
acid 3 synthase (GM3S), an enzyme contributing to insulin 
resistance and subsequently impeding would healing. These 
nanoparticles were further modified with thiolated ethylene 
glycol and dispersed in Aquaphor. As a result, the skin wounds 
in mice treated with these nanoparticles fully healed within 12 
days, a significantly faster rate compared to untreated mice 
[76]. 
 
Conclusion 
 
This review comprehensively explores a wide range of 
nanoparticles, encompassing their various types, synthesis 
methods, and specially engineered designs for biomedical 
applications. Nanoparticles exhibit remarkable and adjustable 
physical, chemical, and biological attributes, positioning them 
as promising candidates for innovative materials in a wide 
range of biomedical engineering studies. Particularly, the 
exceptional progress in utilizing nanoparticles for targeted 
drug delivery has significantly addressed the limitations 
associated with conventional drug delivery systems. They also 
play an important role in tissue engineering for mending 
various types of tissues. Furthermore, carbon and metal-based 
nanoparticles utilized in biosensor development hold promise 
for a multitude of applications in both biomedical and 
agricultural fields. A broad spectrum of demands and 
complexities involved in advancing biomedical systems can be 
effectively tackled by well-designed nanoparticle platforms. 
These platforms provide an array of adjustable characteristics, 
including size, charge, shape, and surface properties, which 
can be precisely tailored to enhance their efficiency, 
sensitivity, and selectivity. This tailored approach can be 
synergistically employed alongside precision medicine 
treatments to refine patient stratification methods. Hence, it is 
essential to conduct more in-depth analyses of nanoparticle 
design and their interactions within the human body. By 
consistently exploring nanoparticle technologies in laboratory 
environments, researchers keep collecting data and evaluate 
outcomes, thus contributing to the growing library of 
established relationship between nanoparticle design and 
functionality. Nevertheless, it is crucial to place the observed 
relationship trends from the research settings into context 
before attempting to apply them broadly. This is because 
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seemingly minor disparities in nanoparticle composition, the 
choice of animal models, and underlying pathologies can 
significantly influence nanoparticle performance. All these 
factors must be taken into account when progressing 
nanoparticle technology towards practical applications. As we 
venture further into the exploration of advanced nanoparticle-
based biomedical platforms, this research has the potential to 
shape the future of rational biomedical systems, catering to 
both personalized and general therapeutic applications. 
Furthermore, the approval of additional nanoparticle systems 
can facilitate their integration into everyday life for novel 
applications. By actively developing more nanoparticle 
platforms for biomedical use, we take significant steps towards 
more effective and environmentally sustainable approach to 
treating diseases. The expansion of advanced nanoparticle-
based systems will play a role inadvancing personalized 
disease treatment, fostering the growth of seemingly 
specialized markets. 
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