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Abstract 
 

The integration of digital technologies like Artificial Intelligence (AI) and Machine Learning (ML), in construction practices can enhance 
productivity and reduce costs. ML is crucial in estimating construction costs, enhancing safety and reliability in projects like buildings, bridges, 
roads, airports, canals, and railroads. The price of commodities in construction includes all sorts of energy commodities and raw materials. This 
research analysed data from oil and gas and petrochemical projects in Egypt, Saudi Arabia, Qatar, UAE, and Oman from 2005-2017, focusing on 
daily reports and 460,172 records on piping erection, manpower, equipment, heat index, and delays. This research used predictive ML modelling 
to analyse daily piping erection rates in Egypt and Qatar under different conditions. Egypt's rate is high, but Qatar's implementation of HSE 
restrictions and high heat index significantly reduces it. The findings emphasised the importance of regulatory compliance, environmental 
conditions, and working conditions in optimizing production output in construction projects. The deep learning ANN model was found to be the 
most effective in predicting piping erection per day, outperforming other ensemble methods and suggesting better capture of the dataset's 
complexity and non-linearity. 
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INTRODUCTION 

 
The integration of digital technologies like Artificial 
Intelligence (AI), Big Data, Machine Learning (ML), and IoT 
in construction practices can enhance productivity and reduce 
costs [1-3]. The construction design process is generally 
divided into four stages, including pre-design, schematic 
design, design development and working drawing [4-6]. 
Precisely, the costs of construction are predicted during the 
‘Pre-Design’ stage to assess project feasibility. However, 
during the ‘Pre-Design’ or ‘Schematic Design’ stages, the 
‘Unit Cost of Construction’ is calculated for the existing 
building types annually. It must be computed with a margin of 
approximately 10%, which is lower than that of the ‘Detailed 
Cost Estimate’ [5]. ML plays a vital role in construction cost 
estimation for improving the safety and reliability of the 
project since the financial costs of commodities represent key 
criteria for constructing, designing, and maintaining buildings, 
bridges, roads, airports, canals, railroads, and others[7, 8]. Cost 
estimation is known as a quantitative estimation of the 
resource costs for all the processing parts based on the premise 
on which a company schedules its production. In customised 
mass production, various parts are needed to be estimated 
accurately and quickly. The production costs for mechanical 
part processing are always a concern for enterprises to survive 
the extreme competition [9]. Therefore, the conceptual costs’ 
precise estimation is handled by cost engineers, project 
managers and decision-makers using ML models like Artificial 
Neural Networks (ANNs), Ordinary Least Square (OLS) and 
Support Vector Machines (SVM) for cost estimation [7, 10]. 
The price of commodities in construction includes all sorts of 
energy commodities and raw materials[11]. These costs are 
predicted using ML-based forecasting models [12].  
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In the construction sector, the Construction Cost Index (CCI) is 
the most important indicator to monitor cost trends, comparing 
goods and services for better acquisition. Therefore, use of ML 
for prediction modelling is efficient for better accuracy of 
estimation cost, bidding operation and construction 
investments [13, 14]. Past studies have examined the 
construction industry's massive data to address challenges like 
supply chain management, sustainability issues, project 
performance management, reduced productivity, and 
profitability using AI-driven prediction modelling. However, a 
gap was observed in examining the accuracy and application of 
various ML prediction models for predicting piping spool 
erection daily production in the oil and gas construction sector. 
Therefore, the current research aimed to develop a prediction 
model for piping spool erection daily production and the 
factors affecting productivity in industrial and oil and gas 
projects using historical data. The model can be applied to 
various construction commodities like concrete, steel fixing, 
shuttering, piping fabrication, equipment installation, steel 
structure fabrication/erection, facade systems, painting, and 
plastering. The research examined various ML and deep 
learning models, including ANNs, Linear Regression (LR), 
Random Forest (RF), Cat Boost Regressor (CR), and Light 
Gradient Boosting Model (LGBM) Regressor, to determine the 
best prediction model for daily piping spools erection 
production and identify features influencing production in oil 
and gas construction sites of Egypt, Saudi Arabia, Qatar, UAE, 
and Oman. The goal is to create a scientific dashboard using 
ML models for construction project commodity estimation. 
 
LITERATURE REVIEW 
 
In the study by Sammour et al. (2023), the application of 
ML techniques to predict Jordan's need for residential 
buildings is assessed. A study of the literature was conducted, 
features were chosen using stepwise backward elimination, and 



the ML predictions were compared with the actual residuals 
and the coefficient of prediction. The demand models were 
developed using nine different economic indicators. When 
compared to ANNs (0.727), Elastic-Net had the best accuracy 
(0.838), in addition to Eureqa (0.715) and Extra Trees (0.703). 
According to the best-performing model estimate, the 
estimated demand for residential buildings in Jordan's first 
quarter in 2023 will rise by 11.5% over the same period in 
2022 [15]. Economic variables and indexes (EV&Is), as well 
as personnel, equipment, materials, and techniques, all have an 
impact on construction costs. The research by Rafiei and 
Adeli(2023) research proposed an innovative methodology for 
estimating construction costs that takes into account EV&Is 
and makes use of cutting-edge ML algorithms. The model 
takes into account the EV&Is factors that impact building, 
including the physical and financial (P&F) characteristics of 
real estate units. It consists of a softmax layer (DBM-
SoftMax), support vector machine (SVM) or three-layer back-
propagation neural network (BPNN), and an unsupervised 
deep Boltzmann machine (DBM) learning technique. The 
study demonstrates that combining traditional BPNN and SVM 
can enhance their effectiveness and accuracy by considering 
EV&I components at varying time delays. The study found 
that the proposed model had significantly lower cost error 
estimates compared to SVM-only and BPNN-only models, 
validating the model on 372 three- to nine-story structures[16]. 
 
According to Jung et al. (2018), decision-making is improved 
throughout the planning and design phases of smart 
educational facilities by forecasting construction costs with 
more accuracy. When project managers are unable to precisely 
forecast construction costs in the early phases of the project, 
they take greater risks and make more logical decisions. 
Several AI-based models were employed to successfully 
anticipate building costs throughout the planning and design 
phase despite the restricted variables and absence of 
performance data. The study discovered that over fitting is a 
common issue with deep learning and artificial neural 
networks, which presents a challenge for real-world 
applications. The study recommends employing Deep Belief 
Network (DBN) and Deep Neural Network (DNN) models for 
more precise predictions for construction cost prediction in the 
planning and design stage[17]. Jo and Yun (2021) analysed the 
appropriate impact factors in order to increase the accuracy 
of the conceptual cost estimate prediction model. The purpose 
is to provide a more precise assessment. Therefore 
it suggested integrating a number of quantitative effect 
elements that may be calculated at an initial stage. Regression 
analysis was used to analyse the accuracy of several situations; 
the best combination of impact factors resulted in an accuracy 
improvement of 0.2-4.7%. This improvement develops from a 
more precise and effective project budget as a consequence of 
the elimination of superfluous impact variables. The study 
emphasises that it is crucial to take these things into account 
when planning and making decisions for projects [18]. 
According to Ning et al. (2020), accurately estimating 
production costs are essential for increasing product 
competitiveness in the era of mass customisation. Common 
cost estimating algorithms include feature-based, process-
based, non-parametric, and activity-based techniques, which 
compare every step in the production process, including 
tooling, labour, transportation, packaging, manufacturing 
specifications, and processing equipment. Regression-model 
cost estimating techniques, however, have difficulty with 
complicated mapping connections because of their fluctuating 

processing interactions, structures, and functions. Deep 
learning techniques, such as voxel data approaches and two- 
and three-dimensional (3D) convolutional neural network 
(CNN) training pictures, automatically discover these 
correlations, as suggested in this research [9]. The study by Ma 
et al.(2023) examined the employment of several models, 
including time series and ML approaches, in areas including 
the cost and quality of building materials, construction 
expenses, product consumption, housing prices, and bid award 
amounts. The hedonic pricing model was used to anticipate 
house prices, while hybrid models were employed to predict 
building costs and CCI. Findings revealed that the ANN model 
is an effective ML model for the quick and simple estimation 
of commodity costs based on physical features and intricate 
interdependencies between factors. Its benefits include 
addressing nonlinear interactions between cost-related factors, 
modelling interdependencies in input data, and handling 
incomplete data sets more effectively than regression. 
Nevertheless, because of its greater complexity and decreased 
degree of freedom, it has drawbacks, including under fitting 
and over fitting [12]. The research by Al Janabi(2022) studied 
the perspectives of portfolio managers to examine the 
liquidity-adjusted risk modelling for the market risk 
parameters. A large commodity portfolio uses these to obtain 
coherent and efficient portfolios using reinforcement ML to 
handle risk-return characteristics subjected to meaningful 
financial and operational constraints under adverse and 
stressed marketing conditions. Results showed that the 
approach liquidity-adjusted value-at-risk (LVaR) is an 
effective framework for commodities price estimation for asset 
allocation, risk reduction, and coherent markets[19]. 
 
METHODOLOGY 
 
Data Collection 
 
In this research, data was gathered from oil and gas and 
petrochemical projects in Egypt, Saudi Arabia, Qatar, UAE, 
and Oman. The data was collected from 2005 to 2017, with an 
average of 35 projects, with Egypt having 14, Saudi Arabia 
having ten, Qatar having three, UAE having four, and Oman 
having four projects. The data was collected from daily 
reports, which encompass the daily production of piping 
erection, manpower status, equipment status, heat 
index/temperature, area of concern, and reasons for delay. 
Figure 1 below explains the stages of data collection and 
model evaluation. 
 

 
 

Figure 1. Problem Solution Process 
 
Model Features 
 
The selected features are listed in Table 1 below (23 
Features).The shape of our data is 15,868 rows (inputs) and 29 
columns (features), with a total of 460,172 records. 
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After studying the row data, some computed statistics are 
shown below: 
 
 The Maximum Piping Erection per Day is 32945 D.I/Day. 
 The Minimum Piping Erection per Day is 466 D.I/Day. 
 The Mean Piping Erection per Day is 6938 D.I/Day. 
 The 75% of the records have piping Erection 9216 D.I/Day. 
 
Data Pre-processing 
 
Data Cleaning 
 
1. Gather and prepare training data. 
2. Using web scraping to collect the official holidays in 

Egypt, Qatar, Saudi Arabia, UAE, and Oman for the period 
from 2005 to 2017. 

3. Remove duplicates and outliers, and deal with missing 
data. Normalize categorical data by normalizing the float 
and integer values. 

4. Using Natural Language Processing Techniques to collect 
the area of concern from daily reports, which impact the 
production rate. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Preparation 
 
1. Visualize data to help detect relevant relationships between 

variables. 
2. Split into training and evaluation sets as below: 
 
Training Model 
 
The goal of training is to make a prediction correctly as often 
as possible; the model becomes better as it is trained to more 
data. 
 
Evaluate the Model 
 
Using some metric or combination of metrics to measure the 
performance of the model. 
 
1. Shuffling the data and selecting a 15/85 ratio for the 

test/train data set. 
2. Hyper-parameter tuning is a cornerstone for Model 

efficiency and performance improvement. 
3. Using test set data to predict the output. 
 
 
 

Table 1. Model Features 
 

Features Categories Type 

Country  Egypt 
 Saudi Arabia 
 Qatar 
 UAE 
 Oman 

Object 

Health, Safety and Environment Executive 
(HSE)Restrictions 

 Yes ( If HSE and security restrictions are found severe in Gulf countries and oil 
and gas life areas in Egypt) 

 NO 

Object 

Temperature/Heat index  High in June, July and August  
 Low Otherwise 

Object 

Political Issues  Yes, in the financial crisis in 2008 and the Arab Spring (a series of anti-
government protests) in 2011, many projects were impacted 

 No Otherwise 

Object 

Material of Pipes   Carbon Steel  
 Stainless Steel 
 Low Temp 
 Duplex 

Object 

Pipes Diameter  Low (< 10 D.I, Medium (between 10 and 22 D.I) 
 Large (< 22 D.I) 

Object 

Availability of Material  Yes and No Object 
Holidays  Yes and No Object 
Fabricated Spools Availability  Low and High Object 
Distance between the spools fabrication 
Workshop and site(L.M) 

 Low in case the distance is within the site boundary 
 High otherwise 

Object 

Crews Nationality  Arab and others Object 
Crew Experience  Low (< 5 years) 

 High (>= 5 years) 
Object 

Crew Supervision  Normal (Supervision/ Direct Labor =  10% to 15%) 
 Low (Supervision/ Direct Labor <10% 
 High (Supervision/ Direct Labor > 15%) 

Object 

Drawings Availability  Low and High Object 

Work Front Availability  Yes and No Object 
Working at Heights  Yes (If the piping erection is on pipe racks with a height of more than 4.60 

meters) 
 No 

Object 

Number of Pipe Fitter Float64 
Number of  Grinder Float64 
Number of Pipe Welders (CS) Float64 
Number of Pipe Welder (Argon) Float64 
Number of  Riggers Float64 
Number of  Cranes Float64 
No of Inspectors for NDT Test Float64 
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working with a goal in thousands, the ANN model with the 
lowest RMSE (1330) is certainly the best. Second place comes 
to the Boosting Models (CatBoost, LGB, and XGB), whose 
RMSE (1341) is quite similar to that of the Deep Learning 
Model (ANN). 
 

Table 2. Combined and Sorted RMSE 
 

S.No. Model RMSE 

1. Deep Learning Model 1330.4 
2. CatBoostRegressor 1341.7 
3. LGB Regressor 1342.7 
4. XGB Regressor 1421.3 
5. Random Forrest Regressor 1429.7 
6. Lasso Regressor 1896.8 
7. Ridge Regressor 1896.9 
8. Linear Regressor 1896.9 
9. Elastic Regressor 1985.3 

 

Furthermore, model implementation in the next section shows 
the outputof the model using new data. 
 
Model Implementation 
 
The model was implemented for different countries, and 
features are presented in this section. The term “Piping 
Erection/day”in this research isdescribed as the amount of 
effort that goes into erecting or installing pipe systems in a 
single day. This statistic assesses an individual's or a group's 
productivity or ability to install or set up pipe systems, 
frequently in industrial or construction operations. In this 
research, in projects requiring the construction of pipe systems, 
it measured the quantity or length of pipe installed within a 
given time frame, often per day, and is utilised as a 
performance or productivity indicator. 
 
Case 1 
 
Case 1 presents data on Egypt's piping erection rate, 
incorporating factors like country, HSE restrictions, 
temperature, political issues, pipe material, workforce, material 
availability, work front availability and crew experience.  

 
Table 3. Case 1: Country “Egypt” with Model Features 

 
S.No. Features Input to The 

Model 
Predicted Output 
(Piping Erection/day) 

1. Country Egypt 9,752.6 D.I/day 
2. HSE restrictions NO 
3. Temperature/Heat index Low 
4. Political issues NO 
5. Material of Pipes  CS 
6. Pipes Diameter Med 
7. Availability of Material High 
8. Holidays No 
9. Number of Pipe Fitter 250 
10. Number of Grinder 350 
11. Number of Pipe Welder (CS) 400 
12. Number of Pipe Welder (Argon) 100 
13. Number of Riggers 350 
14. Number of Cranes 125 
15. Fabricated Spools availability High 
16. No of Inspectors for NDT Test MED 
17. Distance between the spools 

fabrication Workshop and site 
(L.M) 

Low 

18. Crews Nationality Arab 
19. Crew Experience High 
20. crew supervision High 
21. Drawing’s availability High 
22. Work Front availability High 
23. Working at heights NO 

 

The model predicts a daily output of 9,752.6 D.I/day (Table 3), 
indicating a rate of approximately 9,752.6 units of piping 
erection per day in Egypt under these conditions. The data is 
used to predict the piping erection rate in Egypt. 
 
Case 2 
 
In Case 2, Qatar's HSE restriction is marked as "YES", 
affecting the predicted output for piping erection per day. The 
estimated rate of piping erection per day in Qatar is now 
approximately 8,262 units, compared to 9,752.6 units in Case 
1, where the HSE restriction was marked as “NO” (Table 4). 
This suggests that the implementation of HSE restrictions in 
Qatar has influenced the projected daily rate of piping erection. 
 

Table 4.Case 2: Country “Qatar” with Model Features 
 

S.No. Features Input to 
The Model 

Predicted Output 
(Piping Erection/day) 

1. Country Qatar  
 
 
 
 
 
 
 
 
 
 
 
 
8,262 D.I/day 

2. HSE restrictions YES 
3. Temperature/Heat index Low 
4. Political issues NO 
5. Material of Pipes  CS 
6. Pipes Diameter Med 
7. Availability of Material High 
8. Holidays No 
9. Number of Pipe Fitter 250 
10. Number of  Grinder 350 
11. Number of Pipe Welder (CS) 400 
12. Number of Pipe Welder 

(Argon) 
100 

13. Number of  Riggers 350 
14. Number of  Cranes 125 
15. Fabricated Spools availability High 
16. No of Inspectors for NDT Test MED 
17. Distance between the spools 

fabrication Workshop and 
site(L.M) 

Low 

18. Crews Nationality Arab 
19. Crew Experience High 
20. crew supervision High 
21. Drawings availability High 
22. Work Front availability High 
23. Working at heights NO 

 
Case 3 
 
Case 3 involves Qatar, with identical features to Case 2, except 
for a modification in the Heat Index. The high Heat Index 
leads to a significant decrease in the predicted output for 
piping erection per day, reducing the daily rate to 
approximately 5,577.5 D.I/day(Table 5). This decline indicates 
a significant decrease in production output during the summer 
season or in high heat index conditions. Therefore, the adverse 
impact of a high heat index is observable in terms of reduced 
daily piping erection rates in Qatar. 

 
Table 5. Case 3: Country ‘Qatar’ with Change in the Heat Index 

to High 
 

 
Case 4 
 
The case 4 scenario in Qatar involves modifying the “Working 
at heights” feature to "YES", indicating that the crew now 
involves work at heights. This results in a reduced daily rate of 
piping erection, estimated at approximately 5,415.5 D.I/day 
(Table 6). This decrease in production output suggests that 
working at heights has a more significant impact on daily 
production rates, emphasising the potential challenges 
associated with working at heights in piping erection projects. 
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The model predicts a significant drop in daily production rates 
due to the increased workload. There are more drops in piping 
production in case crew are working at heights. 
 
S.No. Features Input to The 

Model 
Predicted Output 
(Piping 
Erection/day) 

1. Country Qatar  
 
 
 
 
 
 
 
 
 
 
5,577.5 D.I/day 

2. HSE restrictions YES 
3. Temperature/Heat index High 
4. Political issues NO 
5. Material of Pipes  CS 
6. Pipes Diameter Med 
7. Availability of Material High 
8. Holidays No 
9. Number of Pipe Fitter 250 
10. Number of Grinder 350 
11. Number of Pipe Welder (CS) 400 
12. Number of Pipe Welder (Argon) 100 
13. Number of Riggers 350 
14. Number of Cranes 125 
15. Fabricated Spools availability High 
16. No of Inspectors for NDT Test MED 
17. Distance between the spools 

fabrication Workshop and 
site(L.M) 

Low 

18. Crews Nationality Arab 
19. Crew Experience High 
20. crew supervision High 
21. Drawings availability High 
22. Work Front availability High 
23. Working at heights NO 

 
Table 6. Case 4: Country ‘Qatar’ with Change in Working at 

Height to (YES) 
 

S.No. Features Input to The 
Model 

Predicted Output 
(Piping Erection/day) 

1. Country Qatar  
 
 
 
 
 
 
 
 
 
 
5,415.5 D.I/day 

2. HSE restrictions YES 
3. Temperature/Heat index High 
4. Political issues NO 
5. Material of Pipes  CS 
6. Pipes Diameter Med 
7. Availability of Material High 
8. Holidays No 
9. Number of Pipe Fitter 250 
10. Number of Grinder 350 
11. Number of Pipe Welder (CS) 400 
12. Number of Pipe Welder (Argon) 100 
13. Number of Riggers 350 
14. Number of Cranes 125 
15. Fabricated Spools availability High 
16. No of Inspectors for NDT Test MED 
17. Distance between the spools 

fabrication Workshop and site 
(L.M) 

Low 

18. Crews Nationality Arab 
19. Crew Experience High 
20. crew supervision High 
21. Drawings availability High 
22. Work Front availability High 
23. Working at heights YES 

 
DISCUSSION 
 
Industrial modular construction produces better-quality goods 
and increases efficiency by assembling parts at a shop before 
shipping them to construction sites. This procedure uses pipe 
spools, which are prefabricated pipe segments that enable 
quicker on-site assembly. However, a number of variables, 
including labour productivity, capacity of the shop, loading 
circumstances, and material availability, affect the estimation 
of fabrication time [29]. Consequently, the purpose of the 
current research was to help production managers plan how to 
provide materials and staff. The deep learning ANN model was 

found to be the most effective in predicting piping erection per 
day, outperforming other ensemble methods like CatBoost, 
LGBM, and XGB. The ANN model significantly outperformed 
advanced regression models in predictive accuracy, suggesting 
that the complexity and non-linearity of the dataset may have 
been better captured by its architecture. Notably, according to 
Chakraborty et al.(2020), using information from previous 
projects, researchers have created ANN models that generate 
accurate and timely cost estimates. Besides, with historical 
data on significant building expenses, they use the CCI for 
concrete structures. It demonstrated how well ANN and 
regression models performed in comparison when it came to 
forecasting simulated cost contingencies brought on by price 
fluctuations in steel reinforcing. Building owners and decision-
makers may use a regression model for cost forecasting for 
mid-rise green office buildings to estimate development costs, 
weigh them against traditional solutions, and choose the most 
appealing one[30]. Similarly, as mentioned by Kulkarni et 
al.(2017), cost, time, quality, and safety are all areas where 
construction management is uncertain, which makes the 
construction process extremely unpredictable. ANNs are used 
to interpret unclear data and draw insightful conclusions. It 
showed the efficient use of ANNs in construction-related tasks, 
including forecasting costs, safety, risks, tender bids, labour, 
and equipment productivity, which is helpful in accurately 
understanding insufficient input data[31]. In the similar 
manner, the results of the current research suggested that deep 
learning models hold significant promise in improving 
predictive accuracy for estimating piping erection per day, 
underscoring the potential of sophisticated ML techniques. The 
cases presented in this research based on predictive ML 
modelling provide a detailed analysis of the predicted daily 
rates of piping erection in Egypt and Qatar under different 
conditions. Egypt's daily piping erection rate is high, with a 
predicted output of approximately 9,752.6 D.I/day. However, 
the implementation of HSE restrictions in Qatar leads to a 
significant decrease in the daily output, dropping to 
approximately 8,262 D.I/day. High Heat Index in Qatar also 
significantly impacts the daily output, dropping to about 
5,577.5 D.I/day. The introduction of "Working at heights" in 
Qatar further reduces the estimated daily rate, dropping to 
around 5,415.5 D.I/day. These cases highlight the importance 
of regulatory compliance, environmental conditions, and 
working conditions in optimizing production output in 
construction projects. The findings underscore the need for 
careful consideration and management of various parameters 
to optimise production output in construction projects. 
 
Limitations and Future Implications 
 
The current study limits in terms of test data and the dynamic 
nature of construction projects. Additionally, it only addresses 
the prediction estimation of commodities in the Middle East, 
mainly Egypt and Qatar. In the future, the research can be 
extended in terms of data and countries. Additionally, the 
integration of ML and AI in the construction industry holds 
significant potential for improving cost estimation, particularly 
for commodities and labour productivity. In the future, these 
technologies can analyse vast datasets, including historical 
project data, market fluctuations, and labour trends, enabling 
the creation of predictive models that provide a more nuanced 
understanding of project costs by many construction 
companies in the Middle East. This allows construction 
professionals to make informed decisions, anticipate budgetary 
challenges, and enhance project financial management. 
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Conclusion 
 
The application of ML and AI in cost estimation not only 
addresses historical uncertainties but also contributes to the 
industry's adaptability, fostering a proactive and resilient 
approach to project planning. This shift is expected to lead to a 
more efficient and sustainable construction landscape. Most 
models prioritise skilled labour, project location, HSE 
restrictions, temperature/heat index, political issues, and 
material type. AI and ML are crucial for future success, and 
pioneers of the future consider these in decision-making and 
management techniques. Historical data is essential for 
building effective models, and companies should collect daily 
reports, areas of concern, manpower reports, equipment 
reports, accidents, incidents, and daily temperatures. This 
research can be applied to various trades like shuttering, steel 
fixing, piping fabrication, equipment installation, concrete 
pouring, and steel erection, allowing for a standard rate for all 
trades. 
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