
International Journal of Science Academic Research 
Vol. 05, Issue 10, pp.8432-8438, October, 2024 
Available online at http://www.scienceijsar.com 
	

 
ISSN: 2582‐6425 

Research Article 
	

ADVANCES IN STRETCHABLE BIOELECTRONICS FOR NEURAL SIGNAL MONITORING 
 

*Min Chae Kim 
 

Seoul International School (SIS), Seoul, 13113 Republic of Korea 
 

Received	19th August 2024;	Accepted	27th September 2024;	Published	online	22nd October 2024 
 
 

Abstract 
 

The brain, as the central organ of the nervous system, regulates various physiological functions through intricate networks of neurons and 
synapses. Disruptions in these networks lead to neurological and psychiatric disorders, such as Parkinson’s disease, Alzheimer's disease, and 
depression. While conventional rigid sensors like electroencephalography (EEG) and electrocorticography (ECoG) are widely used to monitor 
neural activity, their rigid structures often impede effective biointegration. Recent advances in nanotechnology and stretchable electronics, 
particularly functionalized elastomers, offer promising solutions to these limitations. These soft bioelectronics are engineered to conform 
intimately to the dynamic and curvilinear surfaces of brain tissue, enhancing biocompatibility and ensuring long-term stability. Conductive 
nanomaterials, used as functional fillers, form percolation networks within elastomer matrices, facilitating efficient signal transmission under 
mechanical deformation. This approach improves electrical performance while minimizing tissue irritation, closely mimicking the mechanical 
properties of neural tissue. These innovations enable more precise neural recordings, advancing the early diagnosis and treatment of neurological 
disorders. 
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INTRODUCTION 
 
The nervous system orchestrates a wide range of bodily 
processes through complex patterns of neural activity.(Buckner 
et al., 2008) At the center of this system, the brain plays a 
crucial role in regulating emotions, forming memories, and 
processing sensory input. This is achieved through a complex 
network of billions of neurons, organized into thousands of 
subtypes and interconnected by quadrillions of synapses, 
which collectively form the foundation of brain function. 
(Melssen, 2015) Disruptions in these neural networks can lead 
to neurological and psychiatric disorders, such as Parkinson’s 
disease, Alzheimer’s disease, and depression, which are 
increasingly prevalent in aging populations and contribute to 
the global health concern.(Akiyama et al., 2000; Knopman et 
al., 2021; Skorvanek & Bhatia, 2017) The growing incidence 
of brain-related diseases, encompassing neurodegenerative, 
psychiatric, oncological, neurodevelopmental disorders, and 
injuries requiring neurorehabilitation, underscores the need for 
advanced neurotechnologies to monitor brain activity 
effectively. Neurotechnologies have significantly advanced our 
understanding of brain function and its relationship to various 
diseases. Traditional bioelectronic devices, such as 
electroencephalography (EEG), electrocorticography (ECoG), 
and intracortical electroencephalography (ICE), have provided 
invaluable insights into the electrophysiological behavior of 
the brain. (Byrom et al., 2018) Each of these techniques 
records neural signals at varying spatial and depth resolutions, 
contributing to the diagnosis and treatment of neurological 
conditions. (Fu et al., 2017) Despite these advances, these 
conventional devices are often constructed using rigid 
materials such as metals and silicon, which can cause high 
contact impedance, low signal-to-noise ratios, poor tissue 
adhesion, immune responses, and scarring due to friction 
between the device and tissue. (Sunwoo et al., 2020)  
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These difficulties are largely due to "mechanical mismatches" 
between the soft, dynamic nature of brain tissues and the rigid, 
dry inorganic materials used in conventional devices (Hong & 
Lieber, 2019). The development of intrinsically soft electronic 
has gained attention as a promising solution for seamless 
integration with the human body, a concept known as 
"biointegration." (Lim et al., 2020) Functionalized elastomers 
are highly suitable for intrinsically soft electronics due to their 
mechanical properties, which closely resemble the softness of 
brain tissues. (Shim et al., 2021) These elastomers consist of 
polymeric networks formed by long, entangled chains that are 
crosslinked to provide both high stretchability and ultrathin 
form. Such characteristics enable them to conform closely to 
the curvilinear, dynamic surfaces of brain tissues. heir 
electrical properties can be enhanced by incorporating 
functional fillers, such as conductive nanomaterials, creating 
conductive pathways within the elastomer matrix. Conductive 
nanomaterials like metallic nanoparticles or carbon nanotubes 
can be dispersed within the elastomer precursor, and upon 
crosslinking, a conductive nanocomposite is formed. This 
method allows the elastomer to act as a stretchable scaffold 
that supports the conductive fillers, facilitating efficient 
electrical signal transmission while maintaining the material's 
inherent mechanical flexibility (Figure 1). 
 
This review aims to explore the recent developments in 
functionalized elastomers as key components for intrinsically 
stretchable electronics, focusing on their materials, mechanical 
properties, percolation networks, and biocompatibility. These 
aspects are crucial for bioelectronic devices that are designed 
to interface seamlessly with neural tissues. By highlighting 
advancements in the field of neural signal monitoring through 
EEG, ECoG, and ICE sensors, we will discuss how these 
innovations contribute to high-resolution neural recording and 
long-term biointegration. 
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signals compared to platinum macrodot electrodes, suggesting 
their promising potential for clinical applications.(Ganji et al., 
2018). A notable advancement in ECoG technology is the 
development of flexible neural interfaces using stretchable, 
transparent wiring composed of Ag/Au core-shell nanowires. 
These neural interfaces feature 16 recording channels 
encapsulated in a 5 µm-thick PPX layer and are treated with an 
antithrombogenic polymer to inhibit the formation of 
granulation tissue, which commonly occurs as part of the 
biological foreign body response.(Araki et al., 2019)The 
polymer layer softens at body temperature, facilitating stable 
and transparent contact with the brain surface, while 
maintaining rigidity during placement. Furthermore, Au nano-
plating on Ag nanowires improves ion migration resistance, 
enhancing the durability of the neural interface in 
physiological conditions for over five months. Incorporating a 
polyvinyl alcohol-based gel microelectrode with a low 
Young’s modulus (70–400 kPa) also promotes soft tissue 
integration and long-term durability.(Duboeuf et al., 2009). 
Long-term stability and reliability of ECoG signal acquisition 
were demonstrated through somatosensory evoked potentials 
(SEPs), a standard method for assessing neural signal 
consistency after sensory stimulation.(Araki, Uemura, et al., 
2020)While SEPs typically attenuate over time due to tissue 
reaction and device encapsulation, the antithrombogenic-
treated neural interfaces maintained high-quality signal 
acquisition after two months of in vivo implantation, 
effectively preventing the growth of granulation tissue after 
five months. Furthermore, the transparency of the neural 
interface enabled the use of optogenetic techniques, allowing 
optical stimulation of marmoset brain tissue and recording of 
neural responses to blue laser or LED light with low noise, 
demonstrating the versatile functionality of the interface for 
both electrical and optical neural interfacing. Additionally, 
recent innovations include intrinsically stretchable 
neurochemical biosensors like NeuroString, which integrate 
laser-induced graphene nanofiber networks within an 
elastomer matrix.(Li et al., 2022) These sensors can detect 
real-time dynamics of multiple neurotransmitters in the brain 
and gut, combining flexibility and stretchability akin to 
biological tissues while maintaining the electrochemical 
properties of nanomaterials. Such properties of graphene allow 
dual-mode detection for electrophysiological and 
electrochemical measurements, offering multifunctional 
capabilities for in vivo neural monitoring. These advancements 
in ECoG technology underline the potential of soft, 
biocompatible sensors for precise, long-term neural interfacing 
and signal acquisition. 
 
LFP sensor 
 
Local field potential (LFP) sensors, which record intracortical 
electrophysiological signals, offer significant advantages over 
EEG and ECoG techniques due to their higher signal-to-noise 
ratio (SNR) and more localized information, with 
spatiotemporal resolutions around ~0.1 mm and ~30 ms . 
However, the invasive nature of LFP recording limits its 
widespread application outside clinical contexts . Additionally, 
the intracortical environment characterized by its soft, ion-rich, 
and fluidic nature poses challenges for the long-term use of 
conventional rigid bioelectronics. Such bioelectronics often 
suffer from mechanical, chemical, and electrical mismatches 
with brain tissue, which can lead to reduced functionality and 
adverse biological responses over time. Even advanced 
materials have struggled to meet the stringent criteria required 

for LFP sensors. Thin metal films, for example, offer high 
conductivity and can be fabricated into high-resolution 
electrodes(Lee et al., 2019; Sunwoo et al., 2019); however, 
their chemical and electrical incompatibility with the 
intracortical milieu can limit their effectiveness.(Szostak et al., 
2017)On the other hand, conductive polymers and hydrogels 
present a mechanical and chemical match to the brain but 
typically exhibit low conductivity, compromising signal 
quality. To address these challenges, composite materials have 
been developed, combining the advantages of different 
materials to minimize mismatches without compromising 
functionality . For instance, Nam et al. fabricated an injectable 
LFP electrode composed of a composite material, blending a 
supramolecular β-peptide-based hydrogel with conductive 
carbon nanotubes (CNTs).(Nam et al., 2020) This 
βVhex/CNT/hydrogel composite possesses a low modulus 
(~1,500 Pa), similar to that of brain tissue, thus minimizing 
mechanical damage upon implantation . The composite 
provides a unique solution to the inherent design dilemma of 
LFP sensors: the need for stiffness during initial insertion into 
the cortex and softness to avoid long-term mechanical damage. 
The hydrogel composite retains brain-like softness but can be 
implanted via syringe injection, enabling targeted placement in 
the cortex without significant disruption. 
 
In their study, Nam et al. successfully implanted the injectable 
LFP electrode into the layer II/III of the somatosensory cortex 
in a chronic epileptic mouse model. The composite's large 
surface area, combined with the ionic nature of the hydrogel 
and high conductivity of CNTs, significantly reduced 
impedance, enhancing the quality of LFP recordings. During 
epileptic events, the sensor captured beta and gamma band 
signals that were 3-fold and 2.4-fold stronger, respectively, 
compared to those recorded with a standard hydrogel or bare 
electrode. Despite its flexibility, the hydrogel composite 
demonstrated minimal degradation, attributed to the high 
stability of the β-peptide, and did not interfere with cerebral 
blood flow. Histological analysis further demonstrated that the 
hydrogel-based LFP electrode induced significantly lower 
inflammatory responses over a 12-week implantation period 
compared to traditional metal electrodes, highlighting its 
potential for stable, long-term intracortical recording with 
reduced biological reactivity. 
 
Conclusion 
 
The development of intrinsically stretchable electronics marks 
a significant breakthrough in neural interfacing technologies, 
offering enhanced stretchability, softness, and conformal 
contact as well as stability over conventional rigid devices. 
Central to these advances is the use of functionalized 
elastomers, which mimic the mechanical properties of soft and 
curvilinear brain tissues, enabling seamless integration. By 
incorporating conductive fillers such as inorganic and organic 
nanomaterials, elastomers form percolation networks that 
facilitate charge transport while retaining mechanical 
stretchability. Fine-tuning these networks through careful 
control of filler concentration and distribution optimizes both 
conductivity and stretchability, allowing for efficient neural 
signal acquisition without compromising the device’s softness 
and conformability. The mechanical characteristics of 
elastomers, particularly their viscoelasticity, play a pivotal role 
in enhancing neural signal fidelity and device performance. 
Their ability to match the low Young’s modulus of neural 
tissues ensures minimal tissue damage and inflammation, 
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supporting long-term stability in vivo. Additionally, hybrid 
composites, such as gold-coated nanowires embedded in 
elastomer matrices, balance electrical performance and 
mechanical compliance, leading to more precise neural 
recordings at high spatial and temporal resolution. 
Applications of these advances in EEG, ECoG, and LFP 
sensors have demonstrated the potential for high-quality neural 
monitoring. For example, ultrathin gold electrodes for EEG 
provide improved signal-to-noise ratios (SNR), while PEDOT-
based ECoG sensors offer direct cortical recording with higher 
resolution. Intracortical LFP sensors utilizing soft, injectable 
hydrogels closely mimic brain tissue properties, enabling 
cellular-level recording and further expanding the functionality 
of neural interfaces. Looking forward, the intersection of 
materials science, bioengineering, and neuroscience will 
continue to drive advancements in functionalized elastomers 
and soft bioelectronics. Future efforts will focus on enhancing 
biocompatibility, stability, and multifunctionality of neural 
devices through innovative filler integration and polymer 
matrix designs. The overarching goal is to minimize immune 
responses and mechanical mismatches for chronic implantation 
while achieving precise neural signal acquisition and 
modulation. As these technologies evolve, they will play an 
increasingly crucial role in neuroprosthetics, brain-computer 
interfaces (BCIs), and therapeutic monitoring, ultimately 
bridging the gap between engineered devices and biological 
systems for improved brain health and neurorehabilitation. 
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