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Abstract 
 

When a diamagnetic object is being placed in a magnetic field, a phenomenon occurs as an electromagnetic force appears despite the object 
being stationary. This is interesting, because as we know, generally magnetic force occurs when an electric charge moves, which seems to be not 
the case here. This unexpected behavior caught our interest, leading to the production of this paper. In this study, we will try to interpret why this 
phenomenon happens, the condition of which it occurs (i.e whether this occurs if the material being paramagnetic instead) and general equations 
of the force through a theoretical model, therefore broadening our understanding of how a stationary object interacts with magnetic fields. 
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INTRODUCTION 
 
Traditionally, it is often understanded that magnetic fields can 
only affect moving electric charge. So why can a stationary 
diamagnetic object interact with them? It seems to be related to 
the nature property of diamagnetic material, in which it creates 
an opposing magnetic field when interacting with external one. 
To interpret this, often there are two models: an atomic current 
model can be used; for a higher level, a magnetic dipole 
moment can be utilized. In both cases, an internal electric 
current has occurred, therefore partially explaining the problem 
through logic. The atomic current model is very complicated 
and often time is not very distinct from the magnetic dipole 
moment one, especially in macrophysics when the differences 
are negligible (magnetic dipole moment is the approximate 
model of a ring of electric current when being small enough). 
Therefore, we will use the magnetic dipole moment model, 
which is often time accurate enough for the macro world, for 
simplification. 
 
METHODOLOGY 
 
First, we consider the appearance of the magnetic field B in the 
r-axis when the magnetic field varies along z-axis: 
 

 
 

Figure 1. 
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The magnetic flux passing through the bottom surface of the 
cylinder: 
 

Ø(z) = B(z).𝜋.r2 

 
The magnetic flux passing through the top surface of the 
cylinder: 
 

Ø(z+dz) = (B(z)+dB(z)).𝜋.(r+dr)2 

 
The magnetic flux passing through the side of the cylinder: 
 

Ø(r) = B(r).2𝜋r.dr. 
Because flux is conserved, we have: Ø(z) = Ø(z+dz) + Ø(r) 
⇒ B(z).𝜋.r2 = = (B(z)+dB(z)).𝜋.(r+dr)2 + B(r).2𝜋r.dr 
 
Ignore the infinitesimals (dr)2, we have: 

B(r) = - 
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- Then, we consider three situations for homogeneous 
object before giving the general equations: 
 
1. A cylinder: 
 
We divide the original cylinder into thin and thick cylindrical 
with layers dz between (r, r+dr) 
 

 
 

Figure 2. 



 
 

Figure 3. 
 
The volume of this part :dV = 2𝜋r.dr.dz 
 

The magnetic moment of this part: dm = χ.H.dV = χ. 
ሺ௭ሻ
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2𝜋r.dr.dz = dI(x,y).𝜋.r2 

 

⇒dI(x,y) = 2. χ. 
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. dz  (dI(x,y) is the circular current at 

position of radius r ) 
 

B(r) = - 
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⇒dF(z)= dI(x,y). B(r).2𝜋𝑟=- 2𝜋r. χ. 
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2. A sphere: 
 
We divided the original sphere into thin spherical shells 
located at positions (r, r+dr). 
 
We divided the sphere into ring determined by (θ, θ +dθ). 
 

 
 

Figure 4. 
 
The volume of this part: dV = 2𝜋r.cosθ.r.dθ.dr = 
2𝜋.r2.dr.cosθ.dθ 
 
The magnetic moment of this part: dm = χ.H.dV = χ. 
ሺ௭ሻ
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.2𝜋.r2.dr. cosθ.dθ =dI(x,y).𝜋.(r.cosθ)2 

 

⇒dI(x,y) = 2. χ. 
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. dr  (dI(x,y) is the circular current at 

position of ring ) 
 

B(r) = - 
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⇒dF(z)= dI(x,y). B(r).2𝜋𝑟= െ2𝜋r. χ. 
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dr. dB(z) = െ2𝜋r. χ. 
ሺ௭ሻ

µ
. dr. dB(z) (because dz = r. cosθ.dθ) 

 
⇒ F(z) =- 
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3. Random shape: 
 
Considering a small cube at coordinates ( x,y,z ) 
The volume of this part: dV = dx.dy.dz 
 

 
 

Figure 5. 
 
The magnetic moment of this part: dm = χ.H.dV = χ. 
ሺ௭ሻ

µ
.dx.dy.dz = dI(x,y).dx.dy 

 

⇒dI(x,y) = 2χ. 
ሺ௭ሻ

µ
. dz  (dI(x,y) is the circular current at position of 

xy plane ) 
 
The magnetic flux passing through this piece: dØ(z) = 
dB(z).dx.dy 
 
The "magnetic moment" potential energy of this piece: 

dWt = dI(x,y).dØ(z) = χ.
ሺ௭ሻ

µ
.dB(z).dx.dy.dz 

 

The magnetic force acting on this piece: dF(z)=െ
பୢ୲

ப
 = χ. 
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.dB(z).dx.dy 
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Similarly: 
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- Finally, we prove the equation for general cases: 
 
Considering a small cube at coordinates ( x,y,z ) 
The volume of this part: dV = dx.dy.dz 
 

 
Figure 6. 
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The magnetic moment of this part: dm = χ(x,y,z).H.dV = 

χ(x,y,z).
ሺ௭ሻ

µ
.dx.dy.dz = dI(x,y).dx.dy 

⇒dI(x,y) = 2 χ(x,y,z). 
ሺ௭ሻ

µ
. dz  (dI(x,y) is the circular current at 

position of xy plane) 
 
The magnetic flux passing through this piece: dØ(z) = 
dB(z).dx.dy 
 
The "magnetic moment" potential energy of this piece: 
 

dWt = dI(x,y).dØ(z) = χ(x,y,z).
ሺ௭ሻ

µ
.dB(z).dx.dy.dz 

 

The magnetic force acting on this piece: dF(z)=െ
பୢ୲

ப
 = 

χ(x,y,z).
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⇒ F(z) =െ𝑑𝑥.𝑑𝑦 
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So, we have the general equations: 
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RESULT AND DISCUSSION 
 
For the aforementioned equation, we use the magnetic dipole 
model to solve the problem. This involves diamagnetic 
material’s nature of creating new magnetic dipoles to create an 
opposition magnetic field to the outer one. Those magnetic 
dipoles interact with the external magnetic field; therefore, the 
object experiences electromagnetic force.  
 
We believe that this model can also work with paramagnetic 
material; although different from the diamagnetic one, this 
material already contains dipole magnetic at the beginning, and 
the occurrence of external fields only makes those dipoles 
reposition themselves. However, because at the initial state, the 
dipoles distribute randomly, thus the “average” magnetic 
dipole vector can be said to be zero. Therefore, diamagnetic 
and paramagnetic material may behave the same in this 
particular problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One of the atomic electric current models we also consider 
looks like this: 
 

 
 

Figure 6. 
 
Each ring represents a magnetic dipole at the microscopic 
level, which is an electric current loop. Many of these current 
loops occur close together; all run in the same direction 
(because all magnetic dipoles can be said to be in the same 
direction when there is an external field); therefore, the current 
cancels out inside the material (due to the fact that where those 
loop currents make contact, the currents run in the opposite 
directions). As a result, at a macroscopic level, only the surface 
current (the red one) is retained. We can try to use this current 
to calculate the force being generated. However, this model 
fell short because of two problems: 
 
1. The magnetic field vector B direction and magnitude can 

be varied (in other words, grad( 𝐵ሬ⃗ )≠ 0) thus the magnetic 
dipole vectors are not pointed in the same direction, 
therefore the internal current remains. 

2. When the material itself varies, the individual current 
values can be different from each other, so the internal 
current does not cancel out. 
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