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Abstract 
 

Geophysical and physiochemical approach, combined with machine learning (ML) prediction and feature classifiers, were employed in a 
research study to investigate saltwater intrusion in freshwater aquifers in some Estuary environment in Niger Delta, Nigeria. Five ML classifiers 
and regressor models were employed to classify, predict, and optimize 17 resistivity features based on vertical electrical soundings (VES) data 
ranging from 0.4 to 769.9Ωm to predict saline intrusion into aquifer layers. The ML established that the Gradient Boost classifier and Random 
Forest (RF) regress or yielded cross-validation accuracy of 96% and 98% at R2 ≤0.9642 and highlighted five significant predictors of saltwater 
intrusion in specified Estuary environment with F1 score ≤0.9300. The predictive performance of the selected ML confirmed the potential 
electrode was the most significant predictor of saltwater intrusion into freshwater aquifers, corresponding to an 85.3% normalized degree of 
importance. RF predicted saltwater intrusion in the freshwater aquifer based on optimum potential electrodes in the range of 0.5-9.24, layer depth 
of 0.5-4m, elevation (5-13), curve type (A), and resistivity (0.5-43.8Ωmሻwith a corresponding R2≥0.8457. The findings from the groundwater 
occurrence and depth (GOD) index classified the study area into low and moderate vulnerability classes, with values ranging from 0.168 to 
0.420. The hydraulic resistance values at 2.877m-1 to 27.28m-1, determine the aquifer vulnerability index (AVI).Groundwater analysis indicated 
elevated levels of electrical conductivity, salinity, and total dissolved solids, exceeding WHO standards. The GOD index, AVI, and water quality 
index (WQI) from the coastal location were consistent with the ML prediction. 
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INTRODUCTION 
 
Groundwater is an important freshwater resource worldwide, particularly in coastal communities. It is a renewable and finite 
natural resource, vital for human life, social and economic development, and a valuable ecosystem component. Before drilling a 
borehole, knowledge of the subsurface hydrogeological properties is essential to ensure that pro-life aquifer repositories are 
present (Omajene, 2023). When aquifers are exposed to contaminants as a result of natural and anthropogenic activities, it can lead 
to groundwater quality degradation, including drinking water sources, and other consequences and will lead to serious health 
issues such as cancer, cholera, and typhoid (George, 2021; Ibuot et al., 2022; Omejene et al.,2023). Saltwater intrusion can 
naturally occur in coastal aquifers, owing to the hydraulic connection between groundwater and seawater. Because saline water 
has a higher mineral content than freshwater, it is denser and has a higher water pressure. As a result, saltwater can push inland 
beneath the freshwater. Many studies were carried out on groundwater quality evaluation and hydrochemical characterization 
(Brindha et al., 2014; Sajil et al., 2014; Wu, 2014 & 2015; Bouzourra et al., 2015; Vetrimurugan et al., 2015; Li, 2016). 
 

Groundwater vulnerability indicates contamination of the aquifer by applying geoelectric indices to ensure the protective nature of 
the aquifer (Omajene et al., 2023). Groundwater quality generally encompasses the physical, chemical, biological, radiological, 
and morphological characteristics of the water (Ibuot et al., 2019; Obiora et al., 2020). The low resistivity zones seen in the area 
are most likely caused by geogenic processes rather than aquifer overstressing. This assertion is supported by evidence revealed by 
the groundwater flow and simulation of saltwater intrusion into the aquifer (Ohwoghene and Asuma et al., 2021). Groundwater 
vulnerability indicates contamination of the aquifer by applying geoelectric indices to ensure the protective nature of the aquifer 
(Omajene et al., 2023). Groundwater quality generally encompasses the physical, chemical, biological, radiological, and 
morphological characteristics of the water (Ibuot et al., 2019; Obiora et al., 2015). 
 

A geophysical survey using the electrical resistivity method was applied to get background information on the distribution, 
formation, and type of rear subsurface aquifers as a means of delineating the areas that may be prone to groundwater 
contamination and determine the location and depth and appreciable and portable water supply could be achieved (Osegi, 2010; 
Egbai, 2011; Egbai, 2012; Okolie, 2013). The resistivity method has been used by various researchers to explore saltwater 
intrusion in the subsurface. It is preferred over other electrical techniques because it can provide a clearer understanding of the 
subsurface structure and is cost-effective (Egbai, 1998; Ayolabi, et al., 2009). This method has been found suitable for 
determining freshwater and saltwater-bearing formations (Zolidy et al., 1993; Reynolds, 1997; Kilner et al., 2005; Sumsnorac, 
2006; Ayolabi, 2005). The low resistivity zones seen in the area are most likely caused by geogenic processes rather than aquifer 
overstressing. This assertion is supported by evidence revealed from the groundwater flow and simulation of saltwater intrusion 
into the aquifer (Ohwoghene et al., 2021). 
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Machine learning (ML) modeling, classification, and optimization procedures involve transforming raw observations into desired 
features using machine-learning approaches (Ebere et al., 2023; Singh et al., 2013). The voting regressor, random forest classifier, 
baseline classifier, and gradient boost are ensemble learning methods that combine multiple machine learning models to create a 
stronger overall model (Raschka, 2018; Tahir et al., 2023; Ovuoraye et al., 2023). The VR and GB model's robustness is further 
enhanced by its ability to estimate error rates using out-of-bag samples, providing an unbiased estimate of its performance. By 
leveraging the strengths of each model, the current research seeks to optimize more accurate predictions and offer greater stability 
across different resistivity datasets or Vertical electrical sounding (VES) features. 
 
The application of ML prediction, feature classification, and optimization has gained relevance in the various fields of geological 
field survey (Al-Fakih et al., 2023; Lui et al., 2020), seismic operations, petroleum exploration, and geotechnical and 
environmental health applications (Tran et al., 2022; Yin et al., 2024). VES, saltwater intrusion, and prediction of resistivity data 
about the salinity of water quality analysis with a given field are still limited in the literature (Al-Fakih et al., 2023; Singh et al., 
2005; Nguyen et al., 2021; Tran et al., 2022). The previous research studied the hydrodynamic conditions and groundwater quality 
deterioration Mkilima, T.  (2023); Eid et al., (2024). Hodlur and Dhakate (2010) also investigated the correlation of VES and 
electrical borehole log data for groundwater exploration. Quaquah and Boateng (2023) reported the simultaneous optimization of 
VES and magnetotelluric data using a genetic algorithm. Roy et al., (2024) reported an automatic model selection-based machine 
learning approach to predict seawater intrusion into coastal aquifers. Yin et al., (2024) studied the uncertainty-based saltwater 
intrusion prediction using integrated Bayesian machine learning to model in a deep aquifer. Tran et al., (2022) investigated the 
performances of different machine learning algorithms for predicting saltwater intrusion in the Vietnamese Mekong Delta using 
limited input data. Singh et al., (2005) studied one-dimensional inversion of geo-electrical resistivity sounding data using artificial 
neural networks. Al-Fakihet al. (2023) also estimated electrical resistivity from logging data for oil wells using machine 
learning. Liu et al.,(2020) explored deep learning inversion of electrical resistivity data. Singh et al.,(2013) applied neural network 
modelling and prediction of resistivity structures using VES Schlumberger data over a geothermal area. There is still very limited 
research concerning the salinity intrusion into the many freshwater aquifers in the field that has combined resistivity, geochemical 
methods, and ML classifiers with the predictive model to investigate saltwater intrusion into aquifers in coastal regions across the 
globe (Singh et al., 2013; Liu et al., 2020; Quaquah and Boateng, 2023). 
 
The current research investigated saltwater intrusion into freshwater aquifers using resistivity, geothermal and machine learning 
model prediction, and feature classifier. In this study, ML classifiers and regressor models including the random forest regressor, 
Gradient boost (GB) Baseline model, and voting regressor were employed to model, classify, and optimize the 16 VES features to 
predict saltwater intrusion in the study area. The hydraulic resistance was used to calculate the aquifer vulnerability index (AVI). 
The AVI delineated the study area into high and very-high vulnerability classes. The groundwater occurrence and Depth (GOD) 
index in the study area was classified into low and moderate vulnerability classes, while the water quality index (WQI), and 
pollution load index (PLI). The ML classifier's outputs and predictions will assist in experimental validation, reduce evaluation 
costs, and support environmental health, safety, and sustainability. 
 
MATERIALS AND METHODS 
 
The research methodology employed the electrical resistivity method using Schlumberger array, integrated physiochemical and 
machine learning to model approach to investigate saltwater intrusion into the freshwater aquifer in the Estuary environment of 
Niger Delta, Nigeria. The apparent resistivity of the subsurface and voltage generated by transmission of current between 
electrodes (Current and potential electrodes) placed on the surface of the various locations in the study area. The apparent 
electrical resistivity were then determined from the measured data and used to determine the geoelectric parameters. These 
geoelectric parameters are interpreted to determine subsurface resistivity anomalies, depths, and thicknesses following Telford et 
al., 1990; Lowrie, 1997). 
 
Vertical Electrical Sounding (VES) Data Collection 
 
The 50 VES data were collected based on random sampling from different coastal areas across two major communities inBurutu 
and Ogulagha Local Government Areas of Delta State, Nigeria as shown in Fig 1. The coastal area under investigation lies within 
the Niger Delta region and has coordinates 5.3567° N latitude and 5.5073° E longitude. Burutu and Ogulagha are situated in the 
coastal plain of the Niger Delta, one of the world's largest deltaic plains known for its low-lying topography and network of 
creeks, rivers, and swamps. The area is intersected by major rivers, including the Niger River and its tributaries. The sedimentary 
rocks found in Burutu and Ogulagha consist mainly of shale, sandstone, and clay deposits, which are associated with the formation 
of oil and gas reservoirs. These geological formations have made the Niger Delta region a major oil-producing area in Nigeria and 
one of the largest oil-producing regions in Africa. 
 
Collection of water samples 
 
The water samples were collected from four different locations within the vicinity of the study area (Ogulagha, Youbebe Sea I, 
Youbebe Sea II, and Burutu Well II) without contamination. The freshwater sampling and preservation werecarried out in the 
Laboratory Unit, following the standard procedure of the Department of Chemistry, Delta State University, Abraka, Nigeria.  
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Fig. 1. The location of the Estuary Environment for collection of VES dataset 
 

The water samples were split into two containers, one for examination of the anions, and the other for cations examination to 
determine their concentration in expressed in 𝑚𝑔/𝐿. The values of pH were measured using a multi-parameter analyzer. The 
values of electrical conductivity of the water samples were measured at the point of collection using a Wissenschaftlich-
Technische Werkstätten LF91 (Ec) meter. The total dissolved solids (TDS) and dissolved oxygen (DO) were determined at the 
point of collection. The DO was measured with the aid of a dissolved oxygen meter and sensor. The values of the chemical oxygen 
demand (COD) and biological oxygen demand (BOD) were determined in the laboratory using standard procedures. These 
containers were initially washed with 0.05 M HCl filtered through membranes of 0.45 𝜇𝑚 pores and then rinsed with ionized 
water. The water samples were acidified with concentrated nitric acid (𝐻𝑁𝑂ଷ) to homogenize and prevent metallic ions from 
sticking to the walls. The analysis of the bicarbonates (𝐻𝐶𝑂ଷ

ି) was carried out using a standard technique of titration to obtain 
their concentrations. The concentrations of the cations (𝐾ା, 𝑁𝑎ଶା,𝑍𝑛ଶା𝐶𝑎ଶା, 𝑀𝑔ଶା𝑀𝑛ଶା, 𝑃𝑏ଶାand 𝐹𝑒ଶା) were determined 
using the Atomic Adsorption Spectrometer (AAS) model AA-7000 Shimadzu, Japan ROM version 1.01, while the anions ሺ𝑆𝑂ସ

ଶି, 
𝐶𝑙ି, 𝐻𝐶𝑂ଷ

ି) were determined in the laboratory using the standard procedure of the titrimetric method. 
 
Assessing drinking water quality and pollution level 
 
This research employed different indices to assess the water quality of the study area. The indicators include the water quality 
index (WQI), contamination factor (CF), and pollution load index (PLI) by the World Health Organization Standard for Clean 
Water Assessment (WHO, 2020). The findings recorded from the PLI and WQI were employed to validate the predicted output 
recorded by the ML predictors and the feature classifier. 
 
Water quality index (WQI): The Water Quality Index (WQI) is a numerical expression that summarizes the overall quality of 
water based on several physical, chemical, and biological parameters. It provides a simple way to communicate complex water 
quality information to the public and policymakers. The index typically combines multiple water quality parameters into a single 
value, allowing for an easy comparison of water quality over time or between different locations. This index was computed by 
employing the method of weighted arithmetic index. The sample concentration (𝐶) in 




 of each is divided by each respective 

WHO standard (𝑆) in 



 to obtain the quality rating scale (𝑞). The ratio of 𝐶 𝑆⁄  is then multiplied by a factor of 100 to give a 

mathematical expression in equation 1 (Verma et al., 2020; Akakuru et al., 2022). 
 

𝑞 ൌ

ௌ
ൈ 100        (1) 

 
The inverse of the WHO standard corresponding to each of the analyzed parameters gives the relative weight (𝑊) of each sample 

𝑊 ൌ
ଵ

ௌ
         (2) 

 
The water quality index (WQI) is then expressed mathematically in equation 3 as the product of equations 1 and 2; 
𝑊𝑄𝐼 ൌ ∑𝑞𝑊                      (3) 
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Determination of the GOD index: The GOD index, also known as the "GOD" vulnerability index, is a method used to assess 
groundwater vulnerability to pollution. This index considers geological and hydrogeological factors that influence the 
susceptibility of groundwater to contamination. The GOD index is determined by multiplying the effect of the three parameters, 
namely groundwater (G) (confined or unconfined aquifer), occurrence of lithological character of the vadose zone (O), and depth 
to the aquifer (D). The GOD index combines these factors to provide a comprehensive assessment of groundwater vulnerability to 
pollution. Areas with geologically permeable formations, shallow water tables, and thin or permeable overlying lithology are 
likely to have higher vulnerability scores, indicating a greater risk of contamination and vice versa. Table S1 (See supplementary 
material) gives the vulnerability ranges corresponding to the GOD parametric index. The findings based on the attribution of notes 
for GOD model parameters are presented in Table 1 and were used to validate the ML prediction and feature classifier output. The 
summary of the experimental design and workflow is presented in Fig 2. 
 
 
𝐺𝑂𝐷ௗ௫ ൌ 𝐺 ൈ 𝑂 ൈ 𝐷      (4) 
 

 
 

Fig. 2.  Summary of the workflow of the experimental and design methodology 
 

Table 1. Attribution of notes for GOD model Parameters (Khemiri et al., 2013) 
 

Aquifer type Note Lithology (Ω-m) Note Depth to aquifer (m) Note 

Non-aquifer 0 <60 0.4 <2 1 
Artesian 0.1 60 - 100 0.5 2 – 5 0.9 
Confined 0.2 100 - 300 0.7 5 – 10 0.8 
Semi-confined 0.3 – 0.5 300 - 600 0.8 10 – 20 0.7 

 
Machine learning methodology 
 
The machine learning (ML) modeling, feature classification, prediction, and optimization procedure was performed using Scikit-
learn with Python program interface (Abbas et al., 2024). To select optimum VES features, three machine learning classifiers 
include the Dummy classifier (DC), Gradient Boost (GB), and Random Forest (RF). The prediction and optimization process 
involved three regressor models: the Baseline model, Votingregressor (VR), Gradient Boost (GB), and RF regressor. To classify 
the ML features, we used a feedback-forward selection approach (Tahir et al., 2023). The approach involved employing classifier 
models based on 50 VES data collected from different aquifers in the Burutu and Ogulaha areas (refer to Fig 1, section 2.1). The 
ML feature classifiers provide predictive insights into which model predictors on locations based on VES data, resistivity values, 
Longitude, Latitude, elevation, location, curve type, depth, thickness, electrode potential, and current electrode are likely to 
generalize under specific salinity conditions, predicting saltwater intrusion of the locations. The classification models were first 
used to classify the VES variables in two locations, Ogulagha (Ogul) and Burutu (Buru) to obtain the top 10 features based on the 
normalized degree of importance of ML classifier models. The optimized VES features were used to predict the potential electrode 
as a response parameter using the ML regressor models. The output was then validated. 
 
ML optimization and performance evaluation: This study employed used grid-search with cross-validation procedures to 
optimize the ML model outputs by automating and selecting the best hyper parameters or feature predictors to serve as a pivotal 
tool in unsupervised learning for exploring patterns and groupings within VES datasets based on environmental attributes 
(resistivity, location, depths, thickness, current potential, depths, curve type, longitude and latitude, and electrode potential) to 
determine saltwater intrusion into freshwater aquifer. To minimize prediction errors and avoid potential overfitting of the model, 
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the cumulative variance systematically modifies the tuning settings, following the method reported in the literature (Stackelbe et 
al., 2021). The final predicted class label by choosing the class predictors with the highest normalized degree of importance ≤1 to 
ensure the model achieves maximum performance on the given VES dataset (Tahir et al., 2023; Liang et al., 2015). 
 
This study used the following indicators to evaluate the performance of the ML feature classification model: accuracy score, cross-
validation accuracy, precision, recall, and F1-score in model feature selection and prediction metrics. These performance 
indicators were used to validate the model performance and optimize the feature selection. True Positives (TP) outcome indicates 
the model correctly identified instances of saltwater intrusion. The False Negatives (FN) output indicates the instances model 
prediction misses any actual instances of saltwater intrusion (i.e., there were no incorrect rejections). The False Positives (FP):  
This output indicates the model incorrectly identified instances as saltwater intrusion when it was not (an incorrect alarm). The 
True Negatives (TN) metric measures the model correctly identified instances where there was no saltwater intrusion. 
 

Accuracy: ൌ  
்ା்ே

்ା்ேାிାிே
                                                                      (5) 

 
This metric indicates the overall correctness of the model. 
 

Precision: ൌ  
்

்ାி
                                                                                   (6) 

 
This measures the accuracy of the positive predictions. 
 

Recall (Sensitivity): ൌ  
்

்ାிே
                                                                   (7) 

 
This measures the ability of the model to find all the relevant cases. 
 

F1-Score ൌ 2 x 
௦ ୶ ோ

௦ ା ோ
                                                                (8) 

 
The F1-score metric measures the harmonic mean of precision and recall. This metric is useful to balance precision and recall, 
especially in cases with class imbalance (Tahir et al., 2023). The high precision & low recall is cautious, leading to fewer false 
positives but possibly missing many true positives. However, a high recall & low precision indicate the model is aggressive in 
predicting the positive class, leading to more true positives but also more false positives (Tahir et al., 2023).To evaluate the 
performance capacities of the ML regressor models, this study employed statistical evaluation and validation metrics to include 
mean absolute error (MAE), mean squared error (MSE), least squares coefficient (R2), and root mean square error (RMSE) to 
validate model performance following procedures reported in the literature (Wager & Walther, 2015). The MAE values reflect the 
average error magnitude, easy to interpret, and less sensitive to outliers (Ovuoraye et al., 2023). The RMSE offers a measure of 
error magnitude that is more sensitive to large mistakes, which is helpful in situations when significant deviations are a concern 
(Ugonabo et al., 2022; Ovuoraye et al., 2023). The value of the r-squared closest to a unit (R² ≤1.0) shows how well the model 
explains the variance in the target variable (Ovuoraye et al., 2022; Enyoh et al., 2024). A higher indicates a better fit. The 
summary of the ML feature classification and prediction methodology is presented in Fig 3. 
 

 
 

Fig 3: The summary of the Workflow for the Feature classification, prediction, and optimization 
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the RF-regressor perform quite well with relatively low error values (MAE, MSE, and RMSE)with R² of 0.8457 indicating that the 
model explains about 84.57% of the variance in the most important VES feature (potential electrode), which is significantly 
strong.The GB-regressor has the least MAE (0.8076), suggesting the model has the smallest average error among other models 
(Enyor et al., 2024; Ugonabo et al., 2022).However, its MSE and RMSE outputs of the GB model are slightly higher than the RF-
regressor, indicating some larger errors (Ovuoraye et al., 2023; Sighn et al., 2013).The predicted-R² of 0.8073, while slightly 
lower than the RF-regressor model, suggesting the model explains a good portion of the variance (80.73%). Overall, this model 
performs well but may struggle a bit more with larger errors compared to the RF-regressor. Furthermore, the VR model has the 
highest MAE, MSE, and RMSE among the three main models, indicating poorer performance (Ugonabo et al., 2022; Lui et al., 
2020). The R² of 0.7291 suggests that it explains only 72.91% of the variance in the target variable, which is lower than the RF 
and GB Regressors.This model combines the other models in a way that unfortunately results in higher prediction errors. 
Therefore, it is less effective than using the individual models separately.The predicted optimal translates to potential electrode 
recorded from the RF model potential electrode of 0.5 corresponds to a depth (d1) of 5,curve type A, elevation of 10 m, which 
translates to a resistivity (P1) value of 0.5 in Ogulagha location. A higher magnitude of potential electrode (MN/2) value of 1.0 
corresponded to the range of depth (d1) in the range of 1.4- 4.8, curve type A, the elevation range of 5-13 m, which translates to a 
range of resistivity (P1) values of 0.4 to 45.8 in Ogulagha location. 
 
It can be concluded that the RF-regressor and GB-regressor are the top-performing predictive and optimization models. The 
predictive capacity of the RF-regressor slightly outperformedthe GB-regressor in terms of lower MSE, RMSE, and a higher 
R²metric.This outcomesuggests that the RF-regressor is making more reliable and accurate predictionsdue to better generalization 
(Tahir et al., 2023; Nadkarni et al., 2023). The Voting Regressor (VR) did not improve upon the individual models and performed 
worse in terms of error metrics and R². This suggests that the combination of models in the VRmodel was not well-suited to this 
particular case study probably due to noise resistance (Ovuoraye et al., 2023). Therefore, based on these evaluation metrics, the 
RF-regressor appears to be the best model for this task due to tunning ca, followed closely by the GB-regressor, while VR 
underperforms relative to these two. The predictive output of the baseline model served as a poor predictor, demonstrating that the 
other models add significant value to the training model. Consequently, the VR and BM model assumptions are compromised and 
will be ignored, while the RF regressor predictions and model probability will be adopted for further calibration and validation of 
the geoelectric analysis, GOD, geochemical, and WQI in the coastal regions under investigation. 
 

Table 4. Performance evaluation metrics for ML regressormodels and predictions 
 

Models MAE MSE RMSE R2 

RF-regressor 0.859 1.9523 1.3973 0.8457 
GB-regressor 0.8076 2.4376 1.5613 0.8073 
Voting-regressor 1.3567 3.8329 1.9578 0.7291 
Baseline model 3.07999 12.6524 3.65 - 

 

       
         (a)                                                               (b)                                                                     (c) 

 

Fig 6. ML prediction and optimization output showing (a) actual versus predicted for RFregressor, (b) Actual versus predicted for GB, 
and (c) actual versus predicted for the VR model 

 
Geoelectric Analysis 
 
The geoelectric analysis and interpretation of the varying values of resistivity, thickness, and depths recorded from fifty (50) VES 
points shown in Table S2 (See supplementary material) reveal the heterogeneous nature of the subsurface. The frequency 
distribution of the curve types is shown in Fig 7. The outline showed that there are three to four geoelectric layers identified. The 
observed model curve types are dominated by H is 34 % of the total curve type, while other curve types are K, A, Q, AK, QH, 
AA, HA, KH, HK, and QQ. The topmost geoelectric layer has resistivity values vary from 0.1  0.5Ωm at VES 27 to 439.2Ωm at 
VES 32 and its thickness and depth range from 1.2 to 37.7 m and 4.0 to 38.3 m respectively. The resistivity and thickness of the 
aquifer layer (saturated layer) range from 0.4to769.9Ωm and 4.2 to 43.6 m was delineated as a low resistivity layer. This low 
resistivity may be attributed to saline water infiltration and high water content. Since the coastal areas often have intrusion of 
saline water from the sea into the aquifers. Saline water has lower resistivity compared to freshwater, so its presence can 
significantly decrease the overall resistivity of the aquifer layers. Comparatively, the RF regressor predicted resistivity output from 
the ML regressor (0.4-45.8 Ωm) is consistent with the geoelectric resistivity rangeof (0.4 to 769.9Ωm) layer, and the predicted 
thickness (5-13 m) of the aquifer is in the reasonable range (4.2 to 43.6 m) recorded from the geoelectric analysis. This low 
resistivity may be attributed to saline water infiltration and high water content. This output confirmed a saturated layer with low 
resistivity. The presence of salinity, indicated by a lower resistivity (≥0.4Ωmሻ, explains the reduced overall resistivity of the 
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aquifer layers (≤45.8 Ωmሻ confirmed the presence of salinity which accounts for the reduced the overall resistivity of the aquifer 
layers. 
 

 
 

Fig. 7. Pie plot showing the frequency distribution of the curve type 
 
Geochemical Approaches 
 
Table 5 shows the water quality index (WQI) of the coastal regions under investigation. The geochemical output based on the 
WQI contents of 460.17 in Ogulaha exceeds the 440.85 benchmark in Burutu, indicating extremely poor water quality. The 
metallic ions/salts present in the water sample confirmed high concentrations of sodium (Na+), magnesium (Mg2+), and potassium 
(K+) translates to ≥241 mg/L, with lower concentrations of heavy metal manganese (Mn+), and zinc (Zn2+) less than ≤0.98 mg/L 
respectively. This outcome indicates concentrations of alkaline metals are excessively high, suggesting high contamination 
contents, unpleasant taste, and likely presence of odor in the water (Ovuoraye et al., 2022; Witkowska et al., 2021). High sodium 
levels in drinking water can increase blood pressure, particularly in sodium-sensitive individuals, leading to hypertension, a risk 
factor for cardiovascular diseases (Chrysant, 2016; Jaques et al., 2021). Additionally, water with high sodium content can taste 
salty, making it unpleasant to drink and potentially leading to reduced water consumption (Bigiani, 2020). Long-term 
accumulation of the toxic heavy in the body over time leads to long-term health problems for Indigenous people living in the 
coastal regions along Ogulaha communities. 
 
Additionally, the high concentration of chloride (Cl-), HCO3

-and sulfate ions concentrations ≥ 26 mg/L suggests the water can 
irritate the eyes, skin, and respiratory system. At the same time, a high bicarbonate concentration can affect water quality and have 
other implications. The WQI is significantly greater than 440.85, and high bicarbonate levels can interfere with certain water 
treatment processes, such as coagulation and softening, making it more challenging to treat the water effectively. Comparatively, 
the WQI rating of both samples from Burutu and Ogulaha locations was significantly >300, suggesting that the water in these 
coastal regions is unsuitable for drinking (Akakuru et al., 2021). The results revealed evidence of saltwater intrusion in freshwater 
aquifers. This outcome could be attributed to the thin layer or thickness observed across the study area. physiochemical 
parameters, such as in exchange, mineral dissolution, and precipitation, can affect the behavior of dissolved salts in groundwater, 
influencing the extent of saltwater intrusion. This outcome is in reasonable agreement with the findings recorded by the ML 
prediction and optimization output. 
 

Table 5. Water Quality Index (WQI) from selected aquifer in predicted location 
 

 
Sample 

Concentrations (𝒎𝒈/𝑳) WQI 

𝑺𝑶𝟒
𝟐ି 𝑪𝒍ି 𝑯𝑪𝑶𝟑

ି 𝑵𝒂ା 𝑲ା 𝑪𝒂𝟐ା 𝑴𝒈𝟐ା 𝑴𝒏𝟐ା 𝒁𝒏𝟐ା 440.85 
Ogunlaha well 26.00 210.00 74.00 849.00 241.00 14.00 314.00 0.98 0.73 460.17 
Youbebe sea I 29.00 198.00 68.00 789.00 239.00 13.00 321.00 1.03 0.82 617.77 
Youbebe sea II 40.30 214.00 81.00 910.00 256.00 11.37 298.00 1.43 0.91 486.99 
Burutu well 28.10 194.00 91.00 841.00 291.00 14.63 428.00 1.08 0.76 440.85 

 
Table 6. Summary of the range and averages of the physicochemical parameters of water from selected aquifer 

 

S/N Parameters Minimum (𝒎𝒈/𝑳ሻ Maximum (𝒎𝒈/𝑳ሻ Average (𝒎𝒈/𝑳ሻ 
1 pH 7.7 8.0 7.85 
2 Electrical conductivity (μs/cmሻ 19600.00 27000.00 22935.00 
3 Salinity(mg/Lሻ 24.00 31.00 28.00 
4 TDS (mg/Lሻ 810.00 1100.00 925.00 
5 DO (mg/Lሻ 2.40 3.80 2.98 
6 BOD (mg/Lሻ 3.03 6.67 4.39 
7 COD (mg/Lሻ 2.00 3.07 2.39 
8 SOସ

ଶି(mg/Lሻ 26.00 40.30 30.85 
9 Clି(mg/Lሻ 194.00 214.00 204.00 
10 HCOଷ

ି(mg/Lሻ 68.00 91.00 78.50 
11 Naା(mg/Lሻ 789.00 910.00 847.25 
12 Kା(mg/Lሻ 239.00 291.00 256.75 
13 Caଶା(mg/Lሻ 11.37 14.63 13.25 
14 Mgଶା(mg/Lሻ 298.00 428.00 340.25 
15 Mnଶା(mg/Lሻ 0.98 1.43 1.13 
16 Znଶା(mg/Lሻ 0.73 0.91 0.81 

8716                                  International Journal of Science Academic Research, Vol. 05, Issue 12, pp.8708-8721, December, 2024 



The physicochemical properties of the water (Table 6) confirmed high conductivity, with salinity values≥ 28, indicating the 
salinity of the region is significantly higher than freshwater (typically 0-1 mg/L) but lower than seawater (typically 35 mg/L). This 
result implies that the salinity levels in these areas could be negatively impacting certain organisms, resulting in their stress or 
exclusion. The water may require desalination or membrane treatment to reduce salinity levels and other salt concentrations for 
domestic usage (Olson et al., 2022). The high TDS concentration recorded from the water analysis is consistent with the findings 
from the WQI report and confirmed ML predictions of a possibly high degree of saltwater intrusions in the coastal regions under 
investigation. However, the geochemical approach was also applied to investigate the percentage distribution of physical and 
oxygen-related water parameters contained in the water samples collected from four delineated layers across the coastal region. 
Refer to Figure 8 for the displayed results. The measurements of organic compositions (such as COD, DO, and BOD) indicate that 
the Burutu region has a higher degree of organic contamination compared to the Ogulaha districts. The water sample collected 
from the Ogulaha district shows relatively higher levels of salinity (25%) and conductivity (26%) compared to the Burutu district 
(21%). The significantly elevated conductivity of 26% confirmed saltwater intrusion into the freshwater aquifer in Ogulaha. The 
findings from the geochemical approach affirmed the significantly higher conductivity and salinity level in the ML predicted 
location (Ogulaha district) under investigation. 
 
Table 7 shows the VES locations and their estimated values of the GOD index (Fig 8b) used for the description of the geological 
and hydrogeological conditions in the coastal area under investigation. The range of GOD index values, from 0.168 to 0.420, 
suggested that the study area can be classified into low and moderate vulnerability groups. However, regions with a low 
vulnerability rating indicate favorable geological and hydrogeological conditions in the area, and provide substantial protection 
against groundwater pollution. Regions of moderate vulnerability are indicated by vertical electrical sounding features at VES (6, 
14, 16, 18, 24, 31, 33, 46, and 47), while the rest were delineated as low. 
 

 
 

 
 

Fig 8. (a) Contour showing the variation and distribution of the GOD index( b)Confirmation of the percentage distribution of physical 
and oxygen-relatedwater parameters in the locations under investigation. 
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Table 7. Summary of aquifer vulnerability indices using GOD parametric model 
 

VES points Longitude (OE) Latitude (ON)   GOD Index Vulnerability class 

G O ሺ𝛀𝐦ሻ D G O D 
1 5.4551 5.5080 Unconfined 13 3.7 0.6 0.4 0.9 0.216 Low 
2 5.3558 5.5108 Unconfined 704.5 9.0 0.6 0.6 0.8 0.288 Low 
3 5.3564 5.5122 Unconfined 133 3.2 0.6 0.7 0.9 0.378 Low 
4 5.3586 5.5177 Unconfined 0.5 2.5 0.6 0.4 0.9 0.216 Low 
5 5.3574 5.5164 Unconfined 5.2 0.6 0.6 0.4 1.0 0.240 Low 
6 5.3567 5.5127 Unconfined 114.6 1.3 0.6 0.7 1.0 0.420 Moderate 
7 5.3567 5.5143 Unconfined 19 0.5 0.6 0.4 1.0 0.240 Low 
8 5.3522 5.5107 Unconfined 4.6 1.2 0.6 0.4 1.0 0.240 Low 
9 5.3535 5.5118 Unconfined 8.3 0.6 0.6 0.4 1.0 0.240 Low 
10 5.3549 5.5121 Unconfined 13.9 8 0.6 0.4 0.8 0.192 Low 
11 5.3535 5.5060 Unconfined 1682.4 4.0 0.6 0.6 0.8 0.288 Low 
12 5.3534 5.5060 Unconfined 73.4 3.1 0.6 0.5 0.9 0.270 Low 
13 5.3513 5.5022 Unconfined 79.7 1.7 0.6 0.5 1.0 0.300 Low 
14 5.3503 5.5060 Unconfined 257.3 1.2 0.6 0.7 1.0 0.420 Moderate 
15 5.3506 5.5043 Unconfined 16.7 1.4 0.6 0.4 1.0 0.240 Low 
16 5.3466 5.5019 Unconfined 122.2 3.6 0.6 0.7 0.9 0.378 Moderate 
17 5.3510 5.5050 Unconfined 26.2 2.2 0.6 0.4 0.9 0.216 Low 
18 5.3517 5.5065 Unconfined 743.4 2.1 0.6 0.6 0.9 0.324 Moderate 
19 5.3564 5.3214 Unconfined 1.3 11.8 0.6 0.4 0.7 0.168 Low 
20 5.3564 5.3214 Unconfined 0.5 1.3 0.6 0.4 1.0 0.240 Low 
21 5.3564 5.3215 Unconfined 1.2 6.3 0.6 0.4 0.8 0.192 Low 
22 5.3577 5.2215 Unconfined 0.3 4.4 0.6 0.4 0.8 0.192 Low 
23 5.3584 5.3219 Unconfined 44.8 10.8 0.6 0.4 0.7 0.168 Low 
24 5.3641 5.3214 Unconfined 69.5 1.6 0.6 0.5 1.0 0.300 Moderate 
25 5.3642 5.3212 Unconfined 3.1 12.9 0.6 0.4 0.7 0.168 Low 
26 5.3643 5.3211 Unconfined 1.2 10.8 0.6 0.4 0.7 0.168 Low 
27 5.3654 5.3221 Unconfined 1.1 10.7 0.6 0.4 0.7 0.168 Low 
28 5.3652 5.3222 Unconfined 0.5 5.0 0.6 0.4 0.8 0.192 Low 
29 5.3652 5.3215 Unconfined 0.4 4.8 0.6 0.4 0.8 0.192 Low 
30 5.3656 5.3230 Unconfined 0.7 4.5 0.6 0.4 0.8 0.192 Low 
31 5.3620 5.3219 Unconfined 161.1 1.6 0.6 0.7 1.0 0.420 Moderate 
32 5.3615 5.3294 Unconfined 45.8 1.4 0.6 0.4 1.0 0.240 Low 
33 5.3598 5.3317 Unconfined 494.6 1.1 0.6 0.8 1.0 0.480 Moderate 
34 5.3478 5.3230 Unconfined 1.6 10.8 0.6 0.4 0.7 0.168 Low 
35 5.3479 5.3231 Unconfined 2.4 3.8 0.6 0.4 0.9 0.216 Low 
36 5.3486 5.3231 Unconfined 1.4 3.9 0.6 0.4 0.9 0.216 Low 
37 5.3492 5.3227 Unconfined 0.4 2.6 0.6 0.4 0.9 0.216 Low 
38 5.3542 5.3212 Unconfined 0.6 7.1 0.6 0.4 0.8 0.192 Low 
39 3.3556 5.3214 Unconfined 2.2 10.8 0.6 0.4 0.7 0.168 Low 
40 5.3556 5.3210 Unconfined 2.6 11.8 0.6 0.4 0.7 0.168 Low 
41 5.3556 5.3210 Unconfined 0.3 3.7 0.6 0.4 0.9 0.216 Low 
42 5.3560 5.3220 Unconfined 0.7 2.3 0.6 0.4 0.9 0.216 Low 
43 5.3560 5.3221 Unconfined 1.2 3.5 0.6 0.4 0.9 0.216 Low 
44 5.3565 5.3226 Unconfined 5.7 11.2 0.6 0.4 0.7 0.168 Low 
45 5.3601 5.3458 Unconfined 21.4 2.0 0.6 0.4 0.9 0.216 Low 
46 5.3512 5.3447 Unconfined 239.9 5.9 0.6 0.7 0.8 0.336 Moderate 
47 5.3505 5.3438 Unconfined 257.7 3.4 0.6 0.7 0.9 0.378 Moderate 
48 5.3505 5.3430 Unconfined 150 10.4 0.6 0.7 0.7 0.294 Low 
49 5.3516 5.3415 Unconfined 165.7 9.9 0.6 0.7 0.8 0.336 Moderate 
50 5.3551 5.3382 Unconfined 142 1.5 0.6 0.7 1.0 0.420 Moderate 

 
Comparative analysis of the ML model prediction with physiochemical resistivity methods 
 
The analysis of the predicted outputs of the RF-regressor and GB classifier established that curve type (A), potential electrode (p = 
0.5), elevation (10m), and depth (d =5) are significant predictors of saltwater intrusion corresponding to a resistivity value (p = 
0.5Ωm), in Ogulahalocation. For a curve type (H), potential electrodes in the range of (0.53 - 9.24), elevation (5 - 13 m), and depth 
(1.4–4.3) are optimal predictors of saltwater intrusion in Ogulaha location in Delta State, and corresponding to the range of 
resistivity values (0.4 - 45.8Ωm). The predicted higher resistivity value of 45.8 is consistent with the GOD index lithology, and the 
resistivity parameter of < 60 indicates the coastal region under investigation is a non-confined aquifer (Khemiri et al., 2013). 
Additionally, the predicted layer depths of 1.4–5 are in reasonable agreement with the attribution of notes for the GOD index in 
the range of layer depth of 2 – 5 m, suggesting that the aquifer type is likely artesian. 
 
Additionally, the predicted curve type A is consistent with geoelectric analysis confirmed curve type A, which is controlled by 
16% of location and second only to curve type H (see Fig1). The predicted thickness in the range of 1.4–4.8 delineates a saturated 
layer. The range of resistivity values of 1.4–45.8 can be attributed to saline water infiltration in non-permeable aquifers. The ML 
model's outputs demonstrated consistency with both the geochemical method and resistivity results. Based on the ratings obtained 
from the GOD index, PLI, and WQI, it can be concluded that the ML model classifier and predictive model have the potential to 
accurately forecast saltwater intrusion into the aquifer, with a rating between high and extreme (0.5 - 1.0). The significance of 
these findings lies in their potential to enhance local communities through improved access to safe drinking water, better irrigation 
facilities, and enhanced environmental health and safety measures for both aquatic ecosystems and humans. 
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Conclusion 
 
The study investigated the feasibility of using a machine learning (ML) model to predict saltwater intrusion based on resistivity 
and geochemical validation. It utilized data from 50 VES datasets. The gradient boost (GB) classifier model was selected as the 
best ML classifier for analyzing VES features and predicting saltwater intrusion. It achieved a 100% recall and an 88% precision 
score. The ML classifier identified the Potential electrode as the most significant predictor of saltwater intrusion in two target 
locations, with an importance score of 0.85. The Random Forest regressor model predicted saltwater intrusion in the coastal 
region, based on five optimized features (potential electrodes, depth, curve type, and resistivity data). The RF-regressor produced 
reliable predictions with low statistical error metrics (MSE, RMSE, and MAE values less than 0.5) and a strong R2 value of 
0.8325, indicating consistency with actual observations. Analysis of water quality indexes confirmed saltwater intrusion into 
aquifers, primarily due to high levels of TDS salts (mostly chloride), heavy metal ions, stubborn organics (BOD < COD inclusive), 
and alkaline earth metals. The VES calibration and validation of the ML classifier and prediction model were consistent with 
geochemical and resistivity methods. The study recommends using a combination of the GB classifier and RF regressor model, 
utilizing 5 out of 17 VES features, for predicting saltwater intrusion into freshwater aquifers. 
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